
International
Virtual
Observatory

Alliance

PDL: The Parameter Description Language
Version 0.1

IVOA Working Draft May 16, 2012

This version:
0.1: May 16, 2012 (SVN Revision 105)

Latest version:
N/A

Previous versions:

Working Group:
Theory

Editor(s):

Authors:
Carlo Maria Zwölf, Paul Harrison and Franck Le Petit

Abstract

This document discusses a Paramter Definition Language (PDL).

1 Status of this document

This document has been produced by the by the Theory and Grid Working Groups. It
is still a draft.

Acknowledgements

TBD

1

jer
Sticky Note
by the Theory Interest Group and the Grid and Web Services Working Group

Contents

1 Status of this document 1

2 Introduction 4
2.1 The service description: existing solutions and specific needs 4
2.2 Interoperability issues . 5
2.3 A new Parameter Description Language: a unique solutions to description

and interoperability needs . 6

3 The Service object 7

4 The SingleParameter Object 9

5 The ParameterReference object 10

6 The ParameterType object 11

7 The ParameterGroup object 11

8 The Expression Objects 12
8.1 The AtomicParameter expression . 12
8.2 The AtomicConstant expression . 13
8.3 The parenthesisContent expression . 15
8.4 The Operation object . 16
8.5 The FunctionType object . 17
8.6 The Function object . 17
8.7 The FunctionExpression object . 18

9 Expressing complex relations and constraints on parameters 19
9.1 The ConstraintOnGroup Object . 19
9.2 The ConditionalStatement object . 19

9.2.1 The AlwaysConditionalStatement 19
9.2.2 The IfThenConditionalStatement 20

9.3 The ConditionalClause object . 20
9.4 The AbstractCriterion object . 20

9.4.1 The Criterion object . 22
9.4.2 The ParenthesisCriterion object 22

9.5 The LogicalConnector object . 23
9.6 The AbstractCondition object . 23

9.6.1 The IsNull condition . 24
9.6.2 The ”numerical-type” conditions 24
9.6.3 The BelongToSet condition . 24
9.6.4 The ValueLargerThan object . 25
9.6.5 The ValueSmallerThan object . 26

2

9.6.6 The ValueInRange object . 26
9.6.7 The ValueDifferentOf object . 27
9.6.8 The DefaultValue object . 27

9.7 Evaluating and interpreting criteria objects 28

10 PDL and formal logic 30

11 Description Examples 30

3

2 Introduction

In the context of the International Virtual Observatory Alliance researchers would like
to provide astronomical services to the community.
These services could be

• access to an existing catalogue of images and/or data,
• the entry point to a database listing the results of complex and heavy numerical

simulations,
• a computation code exposed online, etc...

In the following we will ignore any specific feature and will use the term generic service
to refer to any kind of process that receives input parameters and produces output ones.

Let us notice that users from the community will not be able to use a new service
unless they have the knowledge of what the service does (and how). Moreover this new
service will be even more useful if it can be immediately interactive and is well integrated
with other services.

Service description and Interoperability are indeed two key points for building
efficient and useful services.

2.1 The service description: existing solutions and specific needs

For a client starting to interact with an unknown service, its description is fundamental:
in a sense it is this description that puts the service from the unknown to the known
state.
Since the client could be a computer system, a generic description should be machine-
readable.

There are several description languages. The most known for their high expres-
sion level and their wide use are WSDL (http://www.w3.org/TR/wsdl20/) and WADL
(http://www.w3.org/Submission/wadl/).
With those tools, people providing a given service could easily express what parameters
the service expects and what data structures it returns. It thus serves a roughly similar
purpose as a method-signature in a programming language.

In the case of generic services for science, description needs are very specific: since
we have to deal with complex physics and models, one should be able to describe for
each parameter its physical meaning, its unit and precision and the range (or set) of
admissible values (according to the model).

In many cases, especially for theoretical simulations, parameters could be linked by
complex conditions or have to satisfy, under given conditions, a set of constraints (that

4

julian
Nota adhesiva
In general, a service will not be used by users if they do not know how to call it, the inputs it needs, what it does and how. However, other issues may have influence in the user decision e.g. who has implement it, who is the service provider, does it implement a well known technique, is there a paper to support the research behind the service, can I use it as a standalone application and can be used together with other services. A new service will be more useful for some users if it can be released easily as an interactive and standalone application whereas other users consider essential the interoperability with other services and applications. Indeed, Service description and interoperability are two key points for building efficient and useful services. This document is focused on these two aspects.

julian
Resaltado

http://www.w3.org/TR/wsdl20/
http://www.w3.org/Submission/wadl/
jer
Sticky Note
- access to smaller sub-products images, spectra and/or data, generated on-the-fly

could involve mathematical properties and formulas). Two examples of this high level
description we would be able to provide are the following:

Service1

Input

~p1 is a m/s vector speed and ‖~p1‖ < c
p2 is time (in second) and p2 ≥ 0

p3 is a kg mass and p3 > 0

Output

{
p4 is a Joule Kinetic Energy and p4 ≥ 0
p5 is a distance (in meter)

(1)

Service2

Input

R 3 p1 > 0; p2 ∈ N; p3 ∈ R
• if p1 ∈]0, π/2] then p2 ∈ {2; 4; 6},
p3 ∈ [−1,+1] and (|sin(p1)

p2 − p3|)1/2 < 3/2
• if p1 ∈]π/2, π] then 0 < p2 < 10,
p3 > log(p2) and (p1 · p2) must belong to N

Output

 ~p4, ~p5 ∈ R3

Always
‖~p5‖
‖~p4‖

≤ 0.01

(2)

To our knowledge, no existing description language meets these fine needs coming with
scientific services. This leads us naturally to work on a new solution and consider about
developing a new description language.

Remark: The PDL descriptions for the two examples above are online: Example 1
and Example 2.

2.2 Interoperability issues

Nowadays, with the massive spread and diffusion of cloud services, interoperability has
become an important element for the success and usability of services. This remains true
in the context of astronomy. For the astronomical community, the ability of systems to
work together without restrictions (and without further ad hoc implementations) is of
high value: this is the ultimate goal that guides the IVOA.

Computer scientists have developed different tools for setting up service interoper-
ability and orchestration. The most well known are

• BAbel (https://computation.llnl.gov/casc/components/),
• Taverna (http://www.taverna.org.uk),
• OSGI and D-OSGI (http://www.osgi.org/),
• OPalm (http://www.cerfacs.fr/globc/PALM WEB/),
• GumTree (http://docs.codehaus.org/display/GUMTREE/).

5

http://vo-param.googlecode.com/svn/trunk/model/documentation/PDL-Description_example01.xml
http://vo-param.googlecode.com/svn/trunk/model/documentation/PDL-Description_Example02.xml
https://computation.llnl.gov/casc/components/
http://www.taverna.org.uk
http://www.osgi.org/
http://www.cerfacs.fr/globc/PALM_WEB/
http://docs.codehaus.org/display/GUMTREE/
jer
Sticky Note
I would refer to these PDL services with references to section 11. Hidden URL links are not printed in paper-format, and I know many people that prefer to read docs in paper format.

In general, with those tools one could coordinate only the services written with given
languages. Moreover the interoperability is achieved only in a basic ”computer” way: if
the input of the B service is a double and the output of A service is a double too, thus
the two services could interact.

Our needs are more complex than this: let us consider a service B′ whose inputs are
a density and a temperature and a service A′ whose outputs are density and temperature
too.
The interoperability is not so straightforward: the interaction of the two services has a
sense only if the two densities (likewise the two temperatures)

• have the same ”computer” type (ex. double),
• are expressed in the same system of units,
• correspond to the same physical concepts (for example, in the service A′ density

could be an electronic density whereas in the service B′ the density could be a
mass density)

But things could be more complicated, even if all the previous items are satisfied: the
model behind the service B′ could implement an Equation of State which is valid only
if the product (density×temperature) is smaller than a given value. Thus the interop-
erability with A′ could be achieved only if the outputs of this last satisfy the condition
on product.

Again, as in case of descriptions no existing solutions could meet our needs and we
are oriented towards building our own solution.

2.3 A new Parameter Description Language: a unique solutions to de-
scription and interoperability needs

To overcome the lack of a solution to our description and interoperability needs, it is
proposed to introduce a new language. Our aim is to finely describe the set of parameters
(inputs and outputs of a given generic services) in a way that

• could be understood easily by human beings,
• could be interpreted and handled by a computer,
• complex relations and constraints involving parameters could be formulated un-

ambiguously. Indeed we would like to express

– all the possible mathematical laws/formulas,
– all the possible conditional sentences (provided they have a logical sense)

involving parameters.

The new language is based on a generic data model (DM). Each object of the DM corre-
sponds to a syntactic element. Sentences are made by building object-structures. Each
sentence can be interpreted by a computer by parsing the sentence-related object struc-
ture.

6

julian
Nota adhesiva
In my opinion, the xml for PDL descriptions is far from easy to understand. If this is describing what has been done, I would say that :it could contain human underestandable informationWhat i'm trying to say is that some parts will be human readable and other parts machine readable.

julian
Nota adhesiva
It is not clear to me if we are describing goals that we have reached or goals that could even be impossible to reach. I’m saying this because the three goals are great and important but the first and the third one are not reached (from my understanding). For example, pdl provides mechanisms to express mathematical expressions but not all the possible mathematical expressions. If we say that these are the big and long term goals, I would describe at some point what it has actually been done. I know you can know this if you read the whole document, but I would write it explicitly (maybe in this section. Something similar to this:
PDL syntax on description files is not fully human readable but it contains elements that are dedicated to provide human readable descriptions. A complete PDL description would include these elements in order to provide to the service client the option to display it to the user. On the contrary, PDL is fully computer readable due to it is expressed using XML language. PDL not only allows describing arithmetic expressions that include trigonometric functions but also conditional statements and constraints over the set of parameters.

jer
Highlight

jer
Sticky Note
I would add a small paragraph about why it is important to provide control mechanisms on the client side. PDL services provide description files to be used mostly by clients. This paragraph could also consider that server-side control is also needed, pointing out to those specific cases we have discussed (e.g. segmentation fault, network issues, abuse by crawlers or robots, etc.) In any case, I think that this control for "non-standard" errors associated to the description of the service, should be out of the scope of PDL.

jer
Sticky Note
The orchestration of services define a Scientific Workflow, and services interoperability is key in the process of designing and building workflows. Something really important to consider in this process of orchestration is the control of parameters constraints at the moment of the workflow execution. Even if interoperability is assured at the phase of workflow desing, a control at the execution phase has to be implemented by workflow engines as service clients.

For describing the physical scientific concept or model behind a given parameter, the
idea is to use SKOS concepts (http://www.w3.org/TR/skos-reference/) or, in more com-
plicated cases, ontologies.

Since the inputs and outputs of every service (including their constraints and com-
plex conditions) could be described with this fine grained granularity, interoperability
becomes possible in the smart and intelligent sense we really need: services should be
able to work out if they can sensibly use their output as input for another one, by simply
looking at its description.

With no loss of generality and to ensure that the model could work with the largest
possible number of programming languages, we decided to fix it under the form of an
XML schema (this choice is also convenient because there are many libraries and tools
for handling and parsing XML documents).

Remark: We recall that PDL is a syntactic framework for describing parameters
(with related constraints) of generic services. Since a PDL description is rigorous and
unambiguous, starting from it, it is possible to verify if the instance of a given parameter
(i.e. the value of the parameter that a user send to the service) is consistent with the
description.
In what follows in this document, we will often use the terms evaluate and interpret
with reference to an expression and/or conditions composed with PDL. By this we mean
that one must replace in the PDL expressions/conditions the referenced parameters by
the set of values provided to the service by user. The replacement mechanisms will be
explained in detail, case by case.

3 The Service object

The root element of the PDL description of a generic service is the object Service (see
figure 1). This must contain

• A unique ServiceName. This field is a String containing the name of the service.
• A unique ServiceId. This field is a String containing the technical Id of the service.

It is introduced for a future eventual integration of PDL into the IVOA registry.
Each service in the registry will be marked with its own unique id.
• A unique Description. This field is a String and contains a human readable de-

scription of the service. This description is not intended to be understood/parsed
by a machine.
• A unique Parameters field which is a list of SingleParameter object type (cf. para-

graph 4). This list contains the definition of all parameters (both inputs and
outputs) of the service. The two following fields specify if a given parameter is a
input or an output one.
• A unique Inputs field of type ParameterGroup (cf. paragraph 7). This object

7

julian
Tachado

julian
Texto insertado
For describing the physical scientic concept or model behind a given parameter, the idea is to use SKOS concepts (http://www.w3.org/TR/skos-reference/) for simplicity, or concepts from other ontologies if needed.

julian
Nota adhesiva
I understand from this paragraph that SKOS is not an ontology. --> I would delete the last part.

julian
Nota adhesiva
At some point in this document I would point out that if we want this to be simple it is important the work of the Semantics Working Group. For example, providing a restricted vocabulary for units, ...

http://www.w3.org/TR/skos-reference/

Figure 1: Graphical representation of the Service object

8

Administrador
Note
Parameters object section is missing in the document. But I know it is in the code.

contain the detailed description (with constraints and conditions) of all the input
parameters.
• A unique Outputs field of type ParameterGroup. This object contain the detailed

description (with constraints and conditions) of all the output parameters.

4 The SingleParameter Object

Figure 2: Graphical representation of the Parameter object

The SingleParameter object (see figure 2) is the core element for describing jobs.
Every object of this type must be characterized by:

• A name (which is unique and is the Id of the parameter);
• A unique parameter type, which explains the nature of the current parameter. The

allowed types are : boolean, string, rational, complex, integer, real, date;
• A unique dimension. A 1-dimension corresponds to a scalar parameter whereas a

dimension equal to N corresponds to a N-size vector. The dimension is expressed

9

julian
Nota adhesiva
I would include also a description field. I am not sure if you told me that in one of the client applications you were taking the description of the parameter from the description of the skos concept. I imaging IVOA providing a vocabulary and as usual it couln't be speficic enough in many cases. so you would get a generic description for the concept but not enough specific for your parameter. Moreover, imaging I don't want to provide a skos concept (because it is an optional field) but I want a human readable description.

julian
Nota adhesiva
Why SkossConcept instead of SkosConcept?

using an expression (cf. paragraph 8). The result of the expression that appears
in this SingleParameter-field object must be integer.1

The unique attribute dependency can take one of the two values required or optional.
If required the parameter must be provided to the service. If optional, the service
could work even without the current parameter and the values will be considered for
processing only if provided.

Optional fields for the SingleParameter object are:

• a unique UCD : which is a reference to an existing UCD for characterizing the
parameter (to be extended);
• a unique Utype : which is a reference to an existing Utype for characterizing the

parameter (to be extended);
• a unique Skos Concept (to be extended).
• a unique Unit (to be extended).
• a unique precision. This field must be specified only for parameter types where the

concept of precision has a meaning. It has indeed no sense for integer, rational or
string. It has sense, for instance, on a real type. For understanding the meaning
of this field, let the function f be a model of a given service. If i denotes the input
parameter, f(i) denotes the output. The precision δ is the smaller value such that
f(i+ δ) 6= f(i).
The precision is expressed using an expression (cf. paragraph 8). The result of the
expression that appears in this precision-field must be of the same type as (or
could be naturally cast to) the type appearing in the field parameter type.

NB: The name of every SingleParameter is unique.

5 The ParameterReference object

Figure 3: Graphical representation of the Parameter Reference object

This object, as its name indicates, is used to reference an existing parameter de-
fined in the Service context (cf. paragraph 3). It contains only a unique attribute

1This is obvious, since this value corresponds to a vector size.

10

julian
Nota adhesiva
I think it is really important to limit the unit vocabulary. And the units ontology sounds like an oportunity. Maybe, a pdl client/server should work if it uses other type of descriptions (from other ontologies), but it might be consider out of the standar.

julian
Nota adhesiva
does it has to be necessaryly a skos concept? if not (as it is said before), then this paragraph should point out why skos concept are prefered. I imagine that it is prefered because it is on the field name.

ParameterName of type String which must corresponds to the Name field of an existing
SingleParameter (cf. paragraph 4).

6 The ParameterType object

This object is used to explain the type of a parameter (cf. paragraph 4) or an expression
(cf. paragraph 8.2). The allowed types are : boolean, string, rational, complex, integer,
real, date;

7 The ParameterGroup object

Figure 4: Graphical representation of the ParameterGroup object

The ParameterGroup object (see figure 4) is used for grouping parameters according
to a criterion of relevancy arbitrarily chosen by users (for instance parameters may be
grouped according to the physics : position-group, speed-group; thermodynamic-group).
However, the ParameterGroup is not only a kind of parameter set, but also can be used
for defining complex relations and/or constraints involving the contained parameters (cf.
paragraph 9.1).
This object must contain a unique Name. This name is a String and is the identification
label of the ParameterGroup, and no two groups can have the same Name.
Optional fields are

• the references to the parameters (cf. paragraph 5) one want to include into the
group;
• a unique object ConstraintOnGroup of type ConstraintOnGroup (cf. paragraph

9.1). This object is used for expressing the complex relations and constraints
involving parameters.
• the objects of type ParametersGroup contained within the current root group.

Indeed the ParametersGroup is a recursive object which can contain other sub-
groups.

11

julian
Óvalo

julian
Óvalo

julian
Línea

julian
Nota adhesiva
name in the figure is different from names in the text.

julian
Óvalo

NB: The name of every ParameterGroup is unique.

NB: A given SingleParameter object could only belong to one ParameterGroup2.
NB: For any practical use, the number on the parameter referenced into a given group
summed to the number of sub-groups of the same group must be greater than one.
Otherwise the group would be a hollow shell.

8 The Expression Objects

The Expression is the most versatile component of the PDL. It occurs almost every-
where: in defining fields for SingleParameters (cf. paragraph 4) or in defining conditions
and criteria).
Expression itself is an abstract object. In this section we are going to review all the
concrete object extending and specializing expressions.

N.B. In what follows, we will call a numerical expression every expression involving
only numerical types. This means that the evaluation of such expressions should lead to
a number (or a vector number if the dimension of the expression is greater than one).

8.1 The AtomicParameter expression

Figure 5: Graphical representation of the AtomicParameter expression object

The AtomicParameterExpression (extending Expression, see figure 5) is the simplest
expression that could be built involving a defined parameter. This object must contain
unique reference to a given parameter.

Optional fields, valid only for numerical types, are :

2As we will see in paragraph 9.1, constraints on parameters are defined at the level of the group. If a
SingleParameter belongs only to one group, it will be easier to verify that there is no contradictions on
conditions

12

• A unique numerical power expression;
• A unique operation (cf. paragraph 8.4).

Let p and exp be respectively the parameter and the power expression we want to
encapsulate. The composite object could be presented as follows:

pexp

Operation type︷ ︸︸ ︷
+
−
∗
·
÷

expression contained in operation︷ ︸︸ ︷
(AnotherExpression)

︸ ︷︷ ︸
Operation object︸ ︷︷ ︸

Atomic Parameter Expression

(3)

To evaluate a given AtomicParameterExpression, one proceeds as follows: Let dp,
dexp and doo be respectively the dimension of the parameter p referenced, the dimension of
the power expression and the dimension of the expression contained within the operation
object.
The exponent part of the expression is legal if and only if:

• dp = dexp. In this case pexp is a dp-size vector expression and ∀ i = 1, ..., dp
the i component of this vector is equal to pi

expi , where pi is the value of the i
component of vector parameter p and expi is the value obtained by interpreting
the i component of vector expression exp.
• Or dexp = 1. In this case, ∀ i = 1, ..., dp the i component of the vector result is

equal to pi
exp, where pi is the same as defined above.

Whatever the method used, let us note ep the result of this first step. It is is clear
that the dimension of ep is always equal to dp. In order to complete the evaluation of
the expression, one should proceed as shown in paragraph 8.4, by setting there b = ep.

8.2 The AtomicConstant expression

The AtomicConstantExpression (extending Expression, see figure 6) is the simplest ex-
pression that could be built involving constants. Since this object could be used for
defining a constant vector expression, it must contain

• A unique list of String which expresses the value of each component of the expres-
sion. Let dc be the size of the String list. If dc = 1 the expression is scalar and it
is a vector expression if dc > 1.
• A unique attribute ConstantType of type ParameterType (cf. paragraph 6) which

defines the nature of the constant expression. The allowed types are the same as
in the field parameterType of the object SingleParameter.

13

julian
Resaltado

Figure 6: Graphical representation of the AtomicParameter expression object

The object is legal if and only if every element of the String list could be cast into
the type expressed by the attribute constantType.

Optional fields, valid only for numerical types, are :

• A unique numerical power expression;
• A unique operation (cf. paragraph 8.4).

Let si (i = 1, ..., dc) and exp be respectively the i component of the String list and
the power expression we want to encapsulate. The composite object could be presented
as follows:

List of String to cast into the provided type︷ ︸︸ ︷
(s1, s2, ..., sdc)

exp

Operation type︷ ︸︸ ︷
+
−
∗
·
÷

expression contained in operation︷ ︸︸ ︷
(AnotherExpression)

︸ ︷︷ ︸
Operation object︸ ︷︷ ︸

Atomic Constant Expression

(4)

To evaluate a given atomicConstantExpression, one proceeds as follows: let dexp and doo
be respectively the dimension of the parameter p referenced, the dimension of the power
expression and the dimension of the expression contained within the operation object.
The exponent part of the expression is legal if and only if:

• dc = dexp. In this case (s1, ..., sdc)
exp is a dc size vector expression and ∀i = 1, ..., dc

the i-th component of this vector is equal to sexpii , where expi is the value obtained
by interpreting the i component of vector exp.

14

• Or dexp = 1. In this case, ∀i = 1, ..., dc the i component of the vector result is
equal to sexpi .

Whatever the method used, let us note ep (whose dimension is always equal to dc) is
the result of this first step. In order to complete the evaluation of the expression, one
should proceed as exposed in paragraph 8.4, by substituting there b = ep.

8.3 The parenthesisContent expression

Figure 7: Graphical representation of theParenthesisContent expression object

The parenthesisContentExpression (extending Expression, see 7) object is used to
explicitly denote precedence by grouping the expressions that should be evaluated first.
This object must contain a unique numerical object Expression (referred to hereafter
as exp1).
Optional fields are

• A unique numerical power expression (referred to hereafter as exp2);
• A unique operation (cf. paragraph 8.4).

This composite object could be presented as follows:

exp2
(exp1)︸ ︷︷ ︸

Priority term

Operation type︷ ︸︸ ︷
+
−
∗
·
÷

expression contained in operation︷ ︸︸ ︷
(AnotherExpression)

︸ ︷︷ ︸
Operation object︸ ︷︷ ︸

Parenthesis Expression

(5)

15

In order to evaluate this object expression, one proceeds as follows: first one evaluates the
expression exp1 that has the main priority. Then one proceeds exactly as in paragraph
8.1 (after the equation (3)) by substituting p = exp1 and exp = exp2.

8.4 The Operation object

Figure 8: Graphical representation of Operation object

The Operation object (see figure 8) is used for expressing operations involving two
numerical expressions. This object must contain:

• a unique attribute operationType. This attribute could take the following values:
plus for the sum, minus for the difference, multiply for the standard product,
scalarProduct for the scalar product and divide for the standard division. Hereafter
these operators will be respectively denoted +,−, ∗, ·,÷.
• a unique expression.

Operation type︷ ︸︸ ︷
+
−
∗
·
÷

expression contained in operation︷ ︸︸ ︷

(ContaindedExpression)

︸ ︷︷ ︸
Operation object

(6)

The Operation object is always contained within a numerical Expression (cf. para-
graph 8) and could not exist alone. Let a be the result of the evaluation of the expression
object containing the operation3 and let b the result of the evaluation of the numerical
expression contained within the operation. As usual, we note da and db the dimensions
of a and b.

The operation evaluation is legal if and only if:

3this came from the evaluation of parameterRef field in case of an AtomicParameterExpression cf.
paragraph 8, from the evaluation of constant field in the case of a AtomicConstantExpression (to be
extended...)

16

• da = db and operation type (i.e. the operator) op ∈ {+,−, ∗,÷}. In this case a op b
is a vector expression of size da and ∀ i = 1, ..., da the i component of this vector
is equal to (ai op bi) (i.e. a term by term operation).
• Or da = db and operation type op is ”·”. In this case a · b is the result of the scalar

product
∑da

i=1 ai ∗ bi. It is obvious that the dimension of this result is equal to 1.
• Or db = 1 and operation type (i.e. the operator) op ∈ {+,−, ∗,÷}. In this case
a op b is a vector expression of size da and ∀ i = 1, ..., da the i component of this
vector is equal to (ai op b).
• Or da = 1 and operation type (i.e. the operator) op ∈ {+,−, ∗,÷}. This case in

symmetric to the previous one.

The type of the result is automatically induced by standard cast operation performed
during the evaluations (Indeed for example a double vector added to an integer vector
is a double vector).

8.5 The FunctionType object

This object is used for specifying the mathematical nature of the function contained
within a Function object (cf. paragraph 8.6). The unique String field this object contains
could take one of these values: size, abs, sin, cos, tan, asin, acos, atan, exp, log, sum,
product. In paragraph 8.6 it is explained how these different function types are used
and handled.

8.6 The Function object

Figure 9: Graphical representation of Function object

The function object (extending expression, see figure 9) is used for expressing a
mathematical function on expressions. This object must contain

• A unique attribute functionName of type functionType (cf. paragraph 8.5) which
specifies the nature of the function.
• A unique expression (which is the function argument).

17

Let exp be the result of the evaluation of the function argument expression and dexp its
dimension. The function object evaluation is legal if and only if:

• f ∈ {abs, sin, cos, tan, asin, acos, atan, exp, log} and the function argument is
a numerical expression. In this case the result is a dexp-size vector and each
component ri = f(expi), ∀ i = 1, ..., dexp.
• Or f =sum (likewise f =product) and the argument is a numerical expression. In

this case the result is a scalar value equal to
∑i=dexp

i=1 expi (likewise
∏i=dexp

i=1 expi),
where expi is the value obtained by interpreting the i component of vector expres-
sion exp.
• Or f =size. In this case the result is the scalar integer value dexp.

From what we saw above, the result of the interpretation of a function object is always
a number.

8.7 The FunctionExpression object

Figure 10: Graphical representation of FunctionExpression object

The FunctionExpression object (extending Expression, see figure 10) is used for build-
ing mathematical expressions involving functions.
This object must contains a unique Function object (cf. paragraph 8.6).
Optional fields, valid only for numerical types, are :

• A unique numerical power expression;
• A unique operation (cf. paragraph 8.4).

18

julian
Resaltado

julian
Nota adhesiva
During all the text exp was the power expressiong. I woud change here exp for something different like 'arg'

This composite object could be presented as follows:

exp

(function)︸ ︷︷ ︸
Function object

Operation type︷ ︸︸ ︷
+
−
∗
·
÷

expression contained in operation︷ ︸︸ ︷
(AnotherExpression)

︸ ︷︷ ︸
Operation object︸ ︷︷ ︸

FunctionExpression Object

(7)

In order to evaluate this object expression, one proceed as follows: first one evaluate
the funtion expression as explained in paragraph 8.6. Then one proceed exactly as in
paragraph 8.1 (after the equation (3)) by taking p =function.

9 Expressing complex relations and constraints on parame-
ters

In this part of the document we will explain how PDL objects could be used for building
complex constraints and conditions involving input and/or output parameters.

9.1 The ConstraintOnGroup Object

Figure 11: Graphical representation of ConstraintOnGroup object

The ConstraintOnGroup object (see figure 11) is always contained within a Parame-
terGroup object and could not exist alone. This object must contain the Conditional-
Statement objects. The latter are used, as is shown in paragraph 9.2, for expressing the
complex relations and constraints involving parameters.

9.2 The ConditionalStatement object

The ConditionalStatement object, as its name indicates, is used for defining conditional
statements. This object is abstract. In this section we are going to review the two
concrete objects extending and specializing ConditionalStatement.

9.2.1 The AlwaysConditionalStatement

As its name indicates, this object (see figure 12) is used for expressing statement that
must always be valid. It must contain a unique Always object (which extends Condi-
tionalClause, cf. paragraph 9.3).

19

Figure 12: Graphical representation of AlwaysConditionalStatement object

9.2.2 The IfThenConditionalStatement

As its name indicates, this object (see figure 13) is used for expressing statements that
are valid only if a previous condition is verified. It must contain:

• a unique If object (which extends ConditionalClause, cf. paragraph 9.3).
• a unique Then object (which extends ConditionalClause, cf. paragraph 9.3).

If the condition contained within the If object is valid, the condition contained within
the Then object must be valid too.

9.3 The ConditionalClause object

The ConditionalClause object (see figure 14) is abstract. It must contain a unique
Criterion object of type AbstractCriterion (cf. paragraph 9.4).
The three concrete objects extending the abstract ConditionalClause are (see figure 15):

• Always;
• If;
• Then.

The Criterion contained within a Always object must always be valid (cf paragraph).
The If and Then objects work as a tuple by composing the IfThenConditionalStatement
(cf. paragraph 9.2.2).

9.4 The AbstractCriterion object

The objects extending AbstractCriterion (see figure 16) are fundamentals for building
ConditionalStatemets (cf. paragraph 9.2) since they are contained within the Always, If
and Then objects (cf. paragraph 9.3). An AbstractCriterion object must contain:

• a unique Expression object (cf. paragraph 8);

20

Figure 13: Graphical representation of IfThenConditionalStatement object

Figure 14: Graphical representation of ConditionalClause object

Figure 15: Graphical representation of Always, If and Then clauses

21

Figure 16: Graphical representation of AbstractCriterion object

• a unique ConditionType which is an object of type AbstractCondition (cf. para-
graph 9.6). This object specify which condition must be satisfied by the previous
Expression.

An optional field is the unique LogicalConnector object (cf. paragraph 9.5) used for
building logical expressions.
The two concrete objects extending AbstractCriterion are Criterion and Parenthesis-
Criterion. The difference between these two objects is in the priority they induce for
interpreting and linking the criteria (cf. paragraph 9.7).

9.4.1 The Criterion object

Figure 17: Graphical representation of Criterion object

This object (see figure 17) extends the AbstractCriterion without specializing it. It
is indeed just a concrete version of the abstract type.

9.4.2 The ParenthesisCriterion object

This object (see figure 18) extends and specialize the AbstractCriterion. It is used for
defining arbitrary priority in interpreting boolean expression based on criteria. The

22

Figure 18: Graphical representation of ParenthesisCriterion object

optional field of ParenthesisCriterion is a unique ExternalLogicalConnector object of
type LogicalConnector. It is used for linking other criteria, out of the priority perimeter
defined by the parenthesis (cf. paragraph 9.7).

9.5 The LogicalConnector object

Figure 19: Graphical representation of LogicalConnector object

The LogicalConnector object (see figure 19) is used for building complex logical ex-
pressions. It is an abstract object and it must contain a unique Criterion of type
AbstractCriterion (cf. paragraph 9.4).
The two concrete objects extending LogicalConnector are:

• the And object used for introducing the logical AND operator between two crite-
ria;4

• the Or object used for introducing the logical OR operator between two criteria.

9.6 The AbstractCondition object

AbstractCondition is abstract type. The objects extending it always belong to an Ab-

4The first criterion is the one containing the LogicalConnector and the second is the criterion contained
within the connector itself.

23

stractCriterion (cf. 9.4). In this context, they are used combined with an Expression
object, for expressing the condition that the expression must satisfy.
Let us consider a given criterion object CR (extendingAbstractCriterion) and let us note
E and C the expression and the condition contained within CR. In what follows we are
going to explain the different objects specializing AbstractCondition and their behavior.

9.6.1 The IsNull condition

This object is used for specifying that the expression E has no assigned value (this is
exactly the same concept as the NULL value in Java or the None value in Python).
Indeed, if and only if E has no assigned value, the evaluation of the tuple (E , C) leads to
a TRUE boolean value. Thus, in the case CR has no LogicalConnector, the criterion is
true.

9.6.2 The ”numerical-type” conditions

These objects are used for specifying that the result of the evaluation of the expression
E is of a given numerical type. The tuple (E , C) is legal if and only if E is a numerical
expression.
The ”numerical-type” objects extending AbstractCondition are:

• IsInteger, in this case the evaluation of the tuple (E , C) leads to a TRUE boolean
value if and only if the evaluation of the numerical expression E is an integer.
• IsRational, in this case the evaluation of the tuple (E , C) leads to a TRUE boolean

value if and only if the evaluation of the numerical expression E is a rational
number.
• IsReal, in this case the evaluation of the tuple (E , C) leads to a TRUE boolean

value if and only if the evaluation of the numerical expression E is a real number.

9.6.3 The BelongToSet condition

Figure 20: Graphical representation of BelongToSet object

This object (see figure 20) is used for specifying that the expression E could take only
a finite set of values. It must contain the Values (which are objects of type Expression)
defining the set of legal values. The number of Values must be greater than one.
This object is legal only if all the Expressions of the set are of the same type (e.g. they

24

are all numerical, or all boolean or all String expressions).
The tuple (E , C) leads to a TRUE boolean value if and only if:

• the expression E and the expressions composing the set are of the same type
• and an element Es exists in the set such that Es = E .

This last equality is to be understood in the following sense: let =t be the equality
operator induced by the type (for numerical type the equality is in the real number
sense, for String type the equality is case sensitive and for boolean the equality is
in the classic boolean sense).
Two expressions are equal if and only if

– the expressions have the same size dE ,
– and E is =t E i, ∀i = 1, ..., dE , where E is and E i are respectively the result of the

evaluation of the i component of expressions Es and E .

9.6.4 The ValueLargerThan object

Figure 21: Graphical representation of ValueLargerThan object

This object (see figure 21) is used for expressing that the result of the evaluation of
the expression E must be greater than a given value.
It must contain

• a unique numerical expression Ec.
• a unique Reached attribute which is a boolean type.

The tuple (E , C) is legal only if E is a numerical expression.
This tuple leads to a TRUE boolean value if and only if the result of the evaluation of
the expression E is greater than the result of the evaluation of the expression Ec and the
attribute Reached is false. Otherwise if the Reached attribute is true the expression E
may be greater than or equal to the result.

25

Figure 22: Graphical representation of ValueSmallerThan object

9.6.5 The ValueSmallerThan object

This object (see figure 22) is used for expressing that the result of the evaluation of the
expression E must be smaller than a given value.
It must contain

• a unique numerical expression Ec.
• a unique Reached attribute which is a boolean type.

The tuple (E , C) is legal only if E is a numerical expression.
This tuple leads to a TRUE boolean value if and only if the result of the evaluation of
the expression E is smaller (otherwise smaller or equal when the attribute Reached is
true) than the result of the evaluation of the expression Ec.

9.6.6 The ValueInRange object

Figure 23: Graphical representation of ValueInRange object

This object (see figure 23) is used for expressing that the result of the evaluation
of the expression E must belong to a given interval. The definition of the interval is

26

made using the ValueLargerThan ValueSmallerThan objects. Indeed, the ValueInRange
object must contain:

• a unique ValueLargerThan object,
• a unique ValueSmallerThan object.

The tuple (E , C) is legal only if E is a numerical expression.
This tuple leads to a TRUE boolean value if and only if the evaluation of both tuples
(E ,ValueSmallerThan) and (E ,ValueLargerThan) lead to TRUE boolean values.

9.6.7 The ValueDifferentOf object

Figure 24: Graphical representation of ValueDifferentOf object

This object (see figure 24) is used for specifying that the expression E must be
different from a given value. It must contain a unique Expression Ec.
In order to be compared, the two expressions E and Ec must have the same type. The
evaluation of the tuple (E , C) leads to a TRUE boolean value only if E 6= Ec. This
inequality has to be understood in the sense explained in paragraph 9.6.3 (in the second
point of the list).

9.6.8 The DefaultValue object

Figure 25: Graphical representation of DefaultValue object

This object (see figure 25) is used for specifying the default value of a parameter.
It must contain a unique expression Ec.
Since the default value of an expression involving functions, multiple parameters, etc.
has no particular sense, in the case of the present object the tuple (E , C) is legal only if

27

• E is an AtomicParameterExpression (cf. paragraph. 8.1)
• and the dimension and the type of the expression Ec are equal to the dimension

and type expressed in the SingleParameter object referenced into the AtomicPa-
rameterExpression.

Moreover, for having a legal DefaultValue object, the criterion CR containing it must be
contained within the Always or Then objects (cf. paragraph 9.3).

9.7 Evaluating and interpreting criteria objects

The evaluation of the criterion type objects (cf. paragraph 9.4) always leads to a boolean
value (the only exception is what we saw in paragraph 9.6.8, where the criterion contains
a DefaultValue condition).
We use hereafter the same notation introduced in 9.6: let us consider a given criterion
(extendingAbstractCriterion) CR and let us note E and C the expression and the condi-
tion contained within CR.
When CR contains no LogicalConnector objects, the evaluation of the criterion is straight-
forward : the result is equal to the boolean-evaluation of the tuple (E , C). This tuple is
evaluated according to the concrete class involved, as explained in paragraphs 9.6.1 to
9.6.8
It is a bit more complex when criteria contain LogicalConnectors. Let us see how to
proceed.
To begin with, let us consider only Criterion concrete objects:
As we saw in the previous paragraphs, criteria object are (with the help of LogicalCon-
nectors object) recursive and hierarchical objects.
This hierarchical structure composing a complex criterion could be graphically repre-
sented as follows.

(E1, C1)
LC1−−−−−→

AND/OR
(E2, C2)

LC2−−−−−→
AND/OR

· · · (Ei, Ci)
LCi−−−−−→

AND/OR
· · · (EN−1, CN−1)

LCN−1−−−−−→
AND/OR

(EN , CN)

(8)
where the index 1, i and N are respectively for the root, the i and the leaf criterion
composing the structure. The term LCi denotes the LogicalConnector contained within
the criterion CRi.
As we saw in paragraphs 9.6.1 to 9.6.8 every tuple (Ei, Ci), i = 1, .., N could be evaluated
(according to the concrete object involved) and leads to a boolean value Bi. Thus the
expression (8) become

B1
LC1−−−−−→

AND/OR
B2

LC2−−−−−→
AND/OR

· · · Bi
LCi−−−−−→

AND/OR
· · · BN−1

LCN−1−−−−−→
AND/OR

BN (9)

This last is a classic sequential boolean expression. It is evaluated from left to right and
the operator AND takes precedence over the OR operator.

28

Let us now consider ParenthesisCriterion criteria. A representation of such a crite-
rion CR could be the following:〈

(E , C) LC−−→ CRc

〉
CR

ELC−−−→ , (10)

where E , C, LC, CRc are respectively the Expression, the condition, the LogicalConnector
and the criterion contained within LC. The term ELC is the ExternalLogicalConnector
of CR.
The criterion structure contained within 〈·〉CR has the highest priority and has to be
evaluate, before the ExternalLogicalConnector evaluation.

In the case where CRc is composed only of Criterion objects (so with no Parenthe-
sisCriterion), the evaluation of the content of 〈·〉CR is performed as shown before in (8)
and (9).

In the case where CRc contains at least one ParenthesisCriterion, one has to go
deeper in the criterion structure to find the deepest criterion CRd such that 〈·〉CRd

con-
tains only criteria of type Criterion.Thus one can simply evaluate the content of 〈·〉CRd

as already shown.

For illustrating how to proceed, let us consider the following complex-criterion struc-
ture:〈

(E1, C1)
LC1−−→ (E2, C2)

〉
CR1

ELC1−−−−→ · · ·〈
(Ei−1, Ci−1)

LCi−1−−−−→
〈

(Ei, Ci)
LCi−−→ (Ei+1, Ci+1)

〉
CRi

〉
CRi−1

ELCi−1−−−−−→

· · ·
〈

(EN−1, CN−1)
LCN−1−−−−→ (EN , CN)

〉
CRN−1

(11)
From what we saw above, the expression (11) becomes〈
B1

LC1−−→ B2
〉
CR1

ELC1−−−−→ · · ·〈
Bi−1

LCi−1−−−−→
〈
Bi

LCi−−→ Bi+1

〉
CRi

〉
CRi−1

ELCi−1−−−−−→

· · ·
〈
BN−1

LCN−1−−−−→ BN
〉
CRN−1

(12)

and finally(
B1

LC1−−−−−→
AND/OR

B2
)

ELC1−−−−−→
AND/OR

· · ·(
Bi−1

LCi−1−−−−−→
AND/OR

(
Bi

LCi−−−−−→
AND/OR

Bi+1

))
ELCi−1−−−−−→
AND/OR

· · ·
(
BN−1

LCN−1−−−−−→
AND/OR

BN
)
.

(13)

This last is a classical sequential boolean expression. It is evaluated from the left to the
right. The sub-expression between the parenthesis must be evaluated with the highest
priority and the operator AND takes precedence over the OR operator.

29

10 PDL and formal logic

We recall that PDL is a grammar and syntax framework for describing parameters and
their constraints. Since the description is rigorous and unambiguous, PDL could verify if
the instance of a given parameter is consistent with the provided description and related
constraints. For example, consider the description{

p1is a Kelvin temperature
Always p1 > 0

. (14)

According to the description, the PDL framework could automatically verify the validity
of the parameter provided by the user. If he/she provides p1 = −3, then this value will
be rejected.
In any case PDL is not a formal-logic calculation tool. One could build the following
description with no problem:{

p1 ∈ R
Always

(
(p1 > 0) AND (p1 < 0)

) . (15)

PDL lacks the capabilwities to perceive the logical contradiction and will work according
to its rules. In this case any parameter p1 provided by user will be rejected.
In other words people providing descriptions of services must pay great atten-
tion to their contents.

Remark: In further developments PDL will include a formal-logic module. This will
permit finding contradictions inside the descriptions. Moreover this kind of module is
required for implementing the automatic computation of a priori interoperability graphs

11 Description Examples

Examples of the descriptions defined by equation (1) and (2) are available respectively
at the following links:

• Example 1 ;
• Example 2.

30

http://vo-param.googlecode.com/svn/trunk/model/documentation/PDL-Description_example01.xml
http://vo-param.googlecode.com/svn/trunk/model/documentation/PDL-Description_Example02.xml
julian
Nota adhesiva
In further developments, PDL client implementations will include a formal-logic module. This will permit finding contradictions inside the descriptions. Moreover, this kind of module is required for implementing the automatic computation of a priori interoperability graphs. It will also permit checking interoperability in terms of semantic annotations. For example, let A be the concept that describes an input parameter of a service and B the concept that describes an output parameter of a service. If A and B are the same concept then both services match the interoperability criterion. However, if A and B are not the same concept we need to ask if the concept B is more specific than the concept A, in other words, if the concept B is generalized or subsumed by the concept A. If this happens then both services match again the interoperability criterion. Interoperability only makes sense when there is an application or infrastructure that allows communication and connection of different services. One example is the applications for orchestrating services by designing workflows (as described in section 2.2). Further developments for PDL include the implementation of interoperability mechanisms in Taverna.

julian
Texto insertado
client implementations

julian
Nota adhesiva
I think the example should be part of the document. the link could be broken at some point.

julian
Nota adhesiva
I may be wrong, but I think that the document would be more clear if the graphical representations in sections 8 and 9 are combined with XML code with examples. For example, in section 11, we include one or two examples that more or less use all the elements described in the document (or at least a representative subset). In sections 8 and 9 I would include small XML fragments from these examples.

jer
Sticky Note
In mostly all IVOA documents the code is explicitly written (e.g. in an annex) I think we should not be afraid of doing so, and join a real PDL description file of one of the services.

jer
Sticky Note
I would rename this section as PDL implementations, exposing briefly the server and client implementations already existing (in Paris infrastructure and in Taverna client). On the contrary, I would not say anything about the Montage service and architecture, unless you really would like to do it :) I think it is more an implementation issue (as may be may others) , rather than a parameter-service description issue.

	Status of this document
	Introduction
	The service description: existing solutions and specific needs
	Interoperability issues
	A new Parameter Description Language: a unique solutions to description and interoperability needs

	The Service object
	The SingleParameter Object
	The ParameterReference object
	The ParameterType object
	The ParameterGroup object
	The Expression Objects
	The AtomicParameter expression
	The AtomicConstant expression
	The parenthesisContent expression
	The Operation object
	The FunctionType object
	The Function object
	The FunctionExpression object

	Expressing complex relations and constraints on parameters
	The ConstraintOnGroup Object
	The ConditionalStatement object
	The AlwaysConditionalStatement
	The IfThenConditionalStatement

	The ConditionalClause object
	The AbstractCriterion object
	The Criterion object
	The ParenthesisCriterion object

	The LogicalConnector object
	The AbstractCondition object
	The IsNull condition
	The "numerical-type" conditions
	The BelongToSet condition
	The ValueLargerThan object
	The ValueSmallerThan object
	The ValueInRange object
	red The ValueDifferentOf object
	The DefaultValue object

	Evaluating and interpreting criteria objects

	PDL and formal logic
	Description Examples

