International
Virtual
Observatory

Alliance

IVOA DatalLink

Version 1.1

IVOA Proposed Recommendation 2023-09-11

Working Group

DAL
This version

https://www.ivoa.net /documents/DataLink /20230911
Latest version

https://www.ivoa.net /documents/Datalink

Previous versions
WD-20211115

DatalLink-1.0
Author(s)

Patrick Dowler, Frangois Bonnarel, Laurent Michel, Markus Dem-
leitner, Mark Taylor

Editor(s)
Patrick Dowler

Abstract

This document describes the linking of data discovery metadata to ac-
cess to the data itself, further detailed metadata, related resources, and to
services that perform operations on the data. The web service capability
supports a drill-down into the details of a specific dataset and provides a set
of links to the dataset file(s) and related resources. This specification also
includes a VOTable-specific method of providing descriptions of one or more
services and their input(s), usually using parameter values from elsewhere
in the VOTable document. Providers are able to describe services that are
relevant to the records (usually datasets with identifiers) by including service
descriptors in a result document.

https://www.ivoa.net/documents/DataLink/20230911
https://www.ivoa.net/documents/DataLink
https://www.ivoa.net/documents/DataLink/20211115/
https://www.ivoa.net/documents/DataLink/20150617/
http://www.ivoa.net/twiki/bin/view/IVOA/PatrickDowler
http://www.ivoa.net/twiki/bin/view/IVOA/FrancoisBonnarel
http://www.ivoa.net/twiki/bin/view/IVOA/LaurentMichel
http://www.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/twiki/bin/view/IVOA/MarkusDemleitner
http://www.ivoa.net/twiki/bin/view/IVOA/MarkTaylor
http://www.ivoa.net/twiki/bin/view/IVOA/PatrickDowler

Status of this document

This is an IVOA Proposed Recommendation made available for public
review. It is appropriate to reference this document only as a recommended
standard that is under review and which may be changed before it is accepted
as a full Recommendation.

A list of current IVOA Recommendations and other technical documents
can be found at https://www.ivoa.net/documents,/ .

Contents

1 Introduction 4
1.1 The Role in the IVOA Architecture 5
1.2 Motivating Use Cases 5
1.2.1 Multiple Files per Dataset 5
1.2.2 Progenitor Dataset 6
1.2.3 Alternate Representations 6
1.2.4 Standard Services 6
1.2.5 Free or Custom Services 7
1.2.6 Access Data Services 7
1.2.7 Recursive DatalLink 7
1.2.8 Datasets linked to an astronomical source 8
1.2.9 Metadata and data related to provenance entities . . . 8
2 The {links} endpoint 8
2.1 Parameters on {links} endpoints 8
2.1 ID .o 8
2.1.2 RESPONSEFORMAT 9
2.2 Registering {links} endpoints 9
2.3 VOSI. . .. 10
3 {links} Response 10
3.1 DataLink MIME Type 10

3.1.1 DataLink recognition outside the context of ObsCore
TESPOISES . o v v v v e e e e e e e e e e e 11
3.2 ListofLinks. 12
321 ID ... 13
322 access_url. Lo o 13
3.2.3 service def 13
3.2.4 error_message 14
3.2.5 description oo 14
3.2.6 semanticso 14

https://www.ivoa.net/documents/

3.2.7 content type 15

3.2.8 content length 15

3.2.9 content qualifier Lo 15

3.2.10 local semantics. L. 16

3.2.11 link auth oo 16

3.2.12 link authorized oL 16

3.3 Successful Requests L. 17

3.3.1 VOTable output 17

3.3.2 Other Output Formats 18

3.4 Errors 18

4 Service Descriptors 18

4.1 Service Resources oL 19

4.2 Descriptive PARAMs 19

4.3 Input PARAMs 20

4.4 Service self-description L. 21

4.5 Example: Service Descriptor for the {links} Capability 22

4.6 Example: Service Descriptor for an SIA-1.0 Service 23

4.7 Example: Service Descriptor for VOSpace-2.0 24

4.8 Example: SODA Spectral Cutout with Custom Parameters . 25

4.9 Example: Self-Describing Service 27

5 Changes 28

5.1 Datalink-1.1 oo 28

5.2 Datalink-1.0 oo 29

5.3 PR-DataLink-1.0-20150413 29

5.4 PR-Datalink-1.0-20140930 29

5.5 PR-Datalink-20140530 30

5.6 WD-Datalink-20140505 30

5.7 WD-DataLink-20140212 31

References 31
Acknowledgments

The authors would like to thank all the participants in DAL-WG discussions
for their ideas, critical reviews, and contributions to this document.

Conformance-related definitions

YV RNA4

The words “must”, “should”, “may”, “recommended”, and “optional” (in
upper or lower case) used in this document are to be interpreted as described
in IETF standard RFC2119 (Bradner, 1997).

The Virtual Observatory (VO) is a general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

This specification defines mechanisms for connecting data items discovered
via one service to related data products and web services.

The links web service capability is a web service capability for drilling
down from a discovered data item such as an identifier, a source in a catalog
or any other data item. In the first case (typically an IVOA publisher dataset
identifier) it allows clients to find ancillary resources like progenitors, derived
data products, or alternate representations of the data, and services that can
act upon the data (usually without having to download the entire dataset).
The expected usage is for DAL (Data Access Layer) data discovery services
(e.g. a TAP service (Dowler and Rixon et al., 2010) with the ObsCore (Louys
and Tody et al., 2017) data model or one of the simple DAL services) to
provide an identifier that can be used to query the associated DatalLink
capability. The DataLink capability will respond with a list of links that
can be used to access the data. Here we specify the calling interface for the
capability and the response, which lists the links and provides both concrete
metadata and a semantic vocabulary so clients can decide which links to use.

The service descriptor resource uses the metadata features of VOTable to
embed service metadata along with tabular data, such as would be obtained
by querying a simple DAL data discovery service or a TAP service. This
service metadata tells the client how to invoke a service and, for those regis-
tered in an IVOA registry, how to lookup additional information about the
service. The service provider can use this mechanism to tell clients about
services that can be invoked to access the discovered data item in some
way: get additional metadata, download the data, or invoke services that
act upon the data files. These services may be IVOA standard services or
custom services from the data providers.

We expect that the service descriptor resource mechanism will be the
primary way that clients will find and use the links capability from data
discovery responses.

http://www.ivoa.net

1.1 The Role in the IVOA Architecture

DataLink is a data access protocol in the IVOA architecture whose purpose
is to provide a mechanism to link resources found via one service to resources
provided by other services.

PDF fallback: A conversion from SVG to PDF failed. This
is probably because inkscape is not installed. While SVG is
not supported by the major TeX engines, it is recommended
to commit built PDFs to the VCS.

Figure 1: Architecture diagram for this document

Although not shown in Figure 1, any implementation of an access pro-
tocol could make use of DataLink to expose resources. Datalink services
conform to the Data Access Layer Interface specification (DALI, Dowler and
Demleitner et al. (2017)), including the Virtual Observatory Support Inter-
faces resources (VOSI, Graham and Rixon et al. (2017)). DataLink services
use VOTable (Ochsenbein and Taylor et al., 2019) as the default output
format both for successful output and to return error documents.

DataLink specifies a standardID for itself which, as defined in VORe-
source (Plante and Demleitner et al., 2018), is used to identify compliant
service capabilities in Registry and VOSI metadata. It also specifies how to
include standardID values in the response to describe links to services.

DataLink includes a description of how data discovery services can in-
clude the link to the associated DataLink service in VOTable. VOTable is
also the default output format for the Datalink web service capability.

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the DatalLink specification. While this is not complete, it
helps to understand the problem area covered by this specification.

1.2.1 Multiple Files per Dataset

It is very common for a single dataset to be physically manifest as multiple
files of various types. With a DataLink web service, the client can drill down
using a discovered dataset identifier and obtain links to download one or

more data files. For static data files, the DatalLink service will be able to
provide a URL as well as the content-type and content-length (file size) for
each download.

1.2.2 Progenitor Dataset

In some cases, the data provider may wish to provide one or more links
to progenitor (input) datasets; this would enable the users to drill down to
input data in order to better understand the content of the product dataset,
possibly reproduce the product to evaluate the processing, or reprocess it
with different parameters or software.

1.2.3 Alternate Representations

For some datasets (large ones) it is useful to be able to access preview
data (either precomputed or generated on-the-fly) and use it to determine if
the entire dataset should be downloaded (e.g. in an interactive session). A
DataLink service can provide links to previews as a URL with a specific re-
lationship to the dataset and include other metadata like content-type (e.g.
image/png) and content-length to assist the client in selecting a preview;
multiple previews with different sizes (content-length) could be returned in
the list of links. Plots derived from the dataset could also be linked as pre-
views. Some previews may be of the same content-type as the complete
dataset, but reduced content in some fashion (e.g. a representative image or
spectrum derived from a large data cube).

Links to alternate representations may be to pre-generated resources or
may be computed on the fly, using either an opaque URL or a custom pa-
rameterised service (see 1.2.5 below).

Other alternate representations that are not previews could also be in-
cluded in the list of links. For example, one could provide an alternate
download format for a data file with different content-type (e.g. FITS and
HDF).

1.2.4 Standard Services

Data providers often implement services that can access a dataset or its files
using standard service interfaces or provide alternate representations of the
dataset. For example, the links for a dataset discovered via a TAP service
could be to an SSA service, allowing the caller to get an SSA query response
that describes the same dataset with metadata specific to the SSA service.
Providers should be able to link to current and future data access ser-
vices that perform filtering and transformations as these services are defined
and implemented (without requiring a new DataLink specification). For

IVOA standard services, the DataLink response would use the VODataSer-
vice standardID as the service type to tell the client which standard (and
version) the linked service complies to. The client can select services they
understand and use the link to invoke the service (with additional service
parameters added by the client).

1.2.5 Free or Custom Services

Data providers often implement custom services that can access a dataset or
its files or provide alternate representations of the dataset. The availability
of such services should be conveyed to clients/users in the same fashion as
for standard services. This allows services defined within the VO to be used
in conjunction with services defined outside the VO to deliver features to
users.

1.2.6 Access Data Services

In many access scenarios, server-side processing of data is highly desirable,
typically to reduce the amount of data to be transferred. Examples for
such operations are cutouts, slicing of cubes, and re-binning to a coarser
grid. Other examples for server-side operations include on-the-fly format
conversion or recalibration. For the purpose of this specification, we call
such services access data services. DataLink should let providers declare
such access data services in a way that a generic client can discover what
operations are supported, their semantics, and the domains of the operations’
parameters. This lets clients operate multiple independent access services
behind a common user interface, allowing scenarios like “give me all voxels
around positions X in wavelength range Y of all spectral cubes from services
Z 1,727 2,andZ 9"

Access data services may be custom services with peculiar functionalities
or IVOA standard services. The IVOA access data service standard is SODA
(Bonnarel and Dowler et al., 2017). SODA services should be described in
the same way as custom access data services.

1.2.7 Recursive DataLink

In some cases, a dataset may contain many files (as in 1.2.1 above) and
the provider may wish to make some files directly accessible and other (less
important) files only accessible via additional calls. Such organisation of
links could be accomplished by including a link to another DatalLink service
in the initial DataLink response (e.g. recursive DataLink). This service link
would be described with both a service type (as in 1.2.4) and content type.

1.2.8 Datasets linked to an astronomical source

There are a lot of catalogs of astronomical sources made available using VO
standards such as ConeSearch (Plante and Williams et al., 2008) or TAP.
For some catalogs “associated data” are available. These data include images
from which sources have been extracted, or imaging the object in case of
extended objects, as well as additional observations such as Spectra or Time
Series of the source and even spectral cubes and Time Series of images for
extended or varying objects. The {links} response obtained for the source
id can allow easy retrieval of all these associated data in one shot.

1.2.9 Metadata and data related to provenance entities

The IVOA Provenance datamodel (Servillat and Riebe et al., 2019) repre-
sents metadata tracing the history of the data. This information can be
stored and retrieved in several ways including in DAL services. The Entity
instances represent the state of the data items between various steps of the
data processing flow. “Entities” can be hooked to the more complete data
they represent using the {links} endpoint. Reversely full provenance records
can be linked to standard discovery service rows using the same endpoint.

2 The {links} endpoint

Most commonly, Datalink link lists are retrieved from {links} endpoints.
These are DALI-sync endpoints with implementor-defined names. As spec-
ified by DALI-sync, the parameters for a request are submitted using an
HTTP GET (query string) or POST action. Any service may offer zero or
more datalink endpoints.

2.1 Parameters on {links} endpoints

On {links} endpoints, the ID and RESPONSEFORMAT parameters as de-
fined below are mandatory.

211 ID

The ID parameter is used by the client to specify one or more identifiers.
The service will return at least one link for each of the specified values. The
ID values are found in data discovery services and may be readable URIs or
opaque strings. Submitting ID values in batches may be more efficient if the
client is planning to submit many such values; clients can control the size of
the output by limiting the number of ID values they submit in each request.

Services may place a limit on the number of ID values they will process
in one request. If the client submits more ID values than a service is pre-
pared to process, the service should process ID values up to the limit and
must include an overflow indicator in the output to denote that the result is
truncated as described in DALI. The service must not truncate the output
within the set of rows (links) for a single ID value.

If the client submits no ID values, the service must respond with a
normal response (e.g. an empty results table for VOTable output). The
service may include service descriptors (see 4) for related services and a
service descriptor describing itself (see 77).

2.1.2 RESPONSEFORMAT

The RESPONSEFORMAT parameter is described in DALI; support for RE-
SPONSEFORMAT is mandatory.

The only output format required by this specification is VOTable with
TABLEDATA serialization; services must support this format. Clients that
want to get the standard (VOTable) output format should simply ignore this
parameter.

To comply with this standard, a {links} endpoint only needs to strip off
MIME type parameters and understand the following;:

e no RESPONSEFORMAT
e RESPONSEFORMAT=votable

e RESPONSEFORMAT=application/x-votable+xml

All of these result in the standard output format.
Service implementers may support additional output formats but must
follow the DALI specification if they chose any formats described there.

2.2 Registering {links} endpoints

Since normal datalink operations do not involve the Registry, this specifi-
cation poses no requirements to register {links} endpoints. Datalink clients
also generally have no reason to inspect VOSI capabilities endpoints, and
hence there are no requirements on mentioning {links} endpoints in any
VOSI capability documents.

Operators still wishing to declare {links} endpoints can do this by giving
a capability with a standardID of

ivo://ivoa.net/std/Datalink#links-1.1

This specification does not constrain the capability type used in such dec-
larations. The access URL of the {links} endpoint must be given in a
vs :ParamHTTP-typed interface element.

Hence, a single datalink capability could be declared as follows within
either a VOResource record or a VOSI capabilities element:

<capability standardID="ivo://ivoa.net/std/DatalLink#links-1.1"

xmlns:vs="http://www.ivoa.net/xml/V0DataService/v1.1">
<interface xsi:type="vs:ParamHTTP" role="std">

<accessURL use="base">

http://example.com/datalink/mylinks

</accessURL>

<queryType>GET</queryType>

<queryType>P0ST</queryType>

<resultType>
application/x-votable+xml;content=datalink

</resultType>

<param std="true" use="required">
<name>ID</name>

<description>publisher dataset identifier</description>
<ucd>meta.id;meta.main</ucd>
<dataType>string</dataType>
</param>
<param std="true" use="optional">
<name>RESPONSEFORMAT</name>
<description>Return the links in this tabular format (defaults
to V0OTable) .</description>
</param>
</interface>
</capability>

2.3 VOSI

Since Datalink services are not usually registered, the VOSI-capabilities
endpoint is not required; the VOSI-availability endpoint is optional.

3 {links} Response

All responses from the {links} endpoint follow the rules for DALI-sync re-
sources, except that the {links} response allows for error messages for indi-
vidual input identifier values.

3.1 DataLink MIME Type

In some data discovery responses (e.g. ObsCore, Louys and Tody et al.
(2017)), there are columns with a URL (access url in ObsCore) and a

10

content type (access format in ObsCore). If the implementation uses a
DataLink service to implement this data access, it should include a complete
(including the ID parameter) DataLink URL and a parameterised VOTable
MIME type:

application/x-votable+xml;content=datalink

to denote that the response from that URL is a DatalLink response. This is
also the preferred MIME type for the {links} response (see 3.3) unless the
caller has explicitly requested a specific value via the RESPONSEFORMAT
parameter (see 2.1.2).

3.1.1 Datalink recognition outside the context of ObsCore responses

In order to provide access URL to {links} endpoints outside the ObsCore-
style service responses context there are several options.

e A DataLink service descriptor (4) could be added to the main table as
long as the content of one of the table FIELDs may be used as the ID
parameter in the {links} endpoint. An exemple is given in subsection
4.5

e In case the {links} endpoint URL is given in the main table for each
row, a LINK element SHOULD be added to the FIELD containing this
URL. The content-type of the LINK will be set to :

application/x-votable+xml;content=datalink

In the example below the content of the "Datalink" FIELD is used as
an URL to the {links} endpoint for each row.

<FIELD name="DataLink" datatype="char" arraysize="*" ucd="meta.ref.url" >
<LINK content-type="application/x-votable+xml;content=datalink" />
</FIELD>

e In case the main table contains an URL not systematically point-
ing to {links} endpoint, but may also point to responses with other
content types (e.g. for single file download), the ObsCore utype "Ac-
cess.reference" SHOULD be added to the FIELD and an additional
FIELD with ObsCore utype "Access.format" SHOULD contain the
"application /x-votable+xml;content—=datalink" value when appropri-
ate. A ref to the ID of the FIELD containing the URL SHOULD be
added to avoid ambiguities.

In the example below, the Image-Link contains the URL pointing to
a {links} response or the dataset istself depending on the value of the
Image-Format FIELD.

11

<FIELD ID="ILink" name="Image-Link" datatype="char" arraysize="x"

ucd="meta.ref.url" utype="AccessReference" />
<FIELD name="Image-Format" datatype="char" arraysize="x"

ucd="meta.code.mime" utype="AccessFormat" ref="ILink" />

3.2 List of Links

The list of links that is returned by the {links} endpoint
as a table with the columns listed in Table 1.

can be represented

name description field value UucCbh
required | required

ID Input identifier yes yes meta.id;meta.main

access_ url link to data or service | yes meta.ref.url

service def reference to a service | yes one only | meta.ref
descriptor resource

error__message error if an access url | yes meta.code.error
cannot be created

description human-readable text | yes no meta.note
describing this link

semantics Term from a con- | yes yes meta.code
trolled vocabulary de-
scribing the link

content type mime-type of the con- | yes no meta.code.mime
tent the link returns

content length size of the download | yes no phys.size;meta.file
the link returns

content _qualifier | nature of the content | no no
the link returns

local semantics | An identifier that | no no meta.id.assoc
allows clients to as-
sociate rows from
different datalink
documents on the
same service with
each other.

link auth use of the link requires | no no meta.code
authentication

link authorized | caller is authorized to | no no meta.code

use the link

Table 1: Fields for Links Output

Fields must be present and values provided (or null) as described in

12

Table 1. Each row in the table represents one link and must have exactly
one of:

e an access_ url
e a service def
e an error_message

To facilitate consumption of large datalink results in streaming mode, all
links for a single ID value must be served in consecutive rows in the output.

If an error occurs while processing an ID value, there should be at least
one row for that ID value and an error message. For example, if an input ID
value is not recognised or found, one row with an error message to that effect
is sufficient. If some links can be created (e.g. download links) but others
cannot due to some temporary failure (e.g. service outage), then one could
have one or more rows with the same ID and different error message(s).

Services may include additional columns; this can be used to include
values that can be referenced from service descriptor input parameters (see
4.1).

Unless specified otherwise below, all fields are text values (datatype=
"char" in the VOTable FIELD).

3.21 ID

The ID column contains the input identifier value.

3.2.2 access_url

The access__url column contains a URL to download a single resource. This
URL can be a static link or a link to a dynamic resource (e.g. preview
generation).

Access URLs may have fragment parts, which could, for instance, refer
to id-ed elements within XML documents or extensions within FITS files.
As in URIs in general, the interpretation of a fragment identifier depends on
the media type. Apart from that no other client handling is expected.

3.2.3 service def

The service def column contains a reference from the result row to a sep-
arate resource. This resource describes a service as specified in section 4.1.
For example, if the response document includes this resource to describe a
service:

<RESOURCE type="meta" utype="adhoc:service" ID="srvi1">

</RESOURCE>

13

then the service def column would contain srv! to indicate that a resource
with XML ID srvl in the same document describes the service. Note that
service descriptors do not always require an XML ID value; it is only the
reference from service def that warrants adding an ID to the descriptor.

3.2.4 error_message

The error _message column is used when no access_url or service def can
be generated for an input identifier. If an error message is included in the
output, the ID and semantics values must be provided as usual; in particular,
the value in the semantics column should reflect the semantics of the link
that could not be produced. From version 1.1 of this standard, services may
provide values in other fields or leave them null (as was required in 1.0).

For example, if an ID value is unrecognized by the service, it would
normally provide the minimum output: the input value for the ID, #this
for semantics, and an error message. If a service did recognise the input 1D
and would normally create a download link, but generating the access url
failed, the service could include the usual content type, content length,
and description along with the ID, semantics, and error message.

3.2.5 description

The description column should contain a human-readable description of the
link; it is intended for display by interactive applications and very important
to help user distinguish links with same semantics (see below).

3.2.6 semantics

The semantics column contains a URI for a concept that describes the mean-
ing of the linked item relative to what ID references. The semantics column
is intended to be machine-readable and to assist automated link selection,
presentation, and usage.

The value is always interpreted as a URI; relative URIs (Berners-Lee and
Fielding et al., 2005) are completed using the base URI of the core DataLink
vocabulary, http://www.ivoa.net/rdf/datalink/core. Terms from this
vocabulary must always be written as relative URIs. This means that for
concepts from the core vocabulary, the value in the semantics column always
starts with a hash.

For example, if the {links} table contains a link to a preview of a dataset,
the ID column will contain the dataset identifier, the access url column will
contain the URL of the preview, and the semantics column will be #preview.

The core DatalLink vocabulary defines a special term for the concept of
this; this term is used to describe links available for the retrieval of the file(s)
making up what ID references.

14

http://www.ivoa.net/rdf/datalink/core

For concepts outside the core DataLink vocabulary, the full concept URI
must be given. It should resolve to a human-readable document describing
what the concept means and what clients are expected to do with links
annotated with it.

As per Vocabularies in the VO 2 (Demleitner and Gray et al., 2021),
at http://www.ivoa.net/rdf/datalink/core the datalink core vocabulary
can be retrieved in various formats including HTML (in a way that the
concept URI is usable in a web browser), various RDF serialisations, and the
VO-specific Desise optimised for simple machine consumption; this should
be used by clients to present the user with labels (and perhaps definitions)
rather than the URI parts given in the semantics column.

In RDF terms, the concepts in datalink core are properties. A datalink
row can be interpreted as an RDF triple

((access_url), is-a-(semantics)-for, (ID)).

3.2.7 content type

The content _type column tells the client the general file format (mime-type)
they will receive if they use the link (access url or invoking a service). For
recursive Datalink links, the content type value should be as specified in
section 3.1. This field may be null (blank) if the value is unknown.

3.2.8 content length

The content length column tells the client the size of the download if they
use the link, in bytes. For VOTable, the FIELD must be datatype="long"
with unit="byte". The value may be null (blank) if unknown and will
typically be null for links to services.

3.2.9 content_qualifier

The content qualifier column is optional. If it is present, it tells the client
the nature of the thing or service they will receive or access if they use the
link.

If the access url references a data product, the content qualifier field
should define its product type. In that case, the considerations for the
semantics column (Sect. 3.2.6) apply, except that the basic vocabulary
is http://www.ivoa.net/rdf/product-type, and the interpretation as an
RDF triple would be

((access_url), is-a, (content _qualifier))

For rows not linking to data products, content qualifier’s interpretation
will be different, and the default vocabulary will be inappropriate. Full

15

http://www.ivoa.net/rdf/datalink/core
http://www.ivoa.net/rdf/product-type

concept URIs will have to be used in this case, and their translations to
RDF triples is not covered by this version of DataLink.

3.2.10 Iocal_semantics

The local semantics column allows for identification of corresponding rows
for different IDs in the same DatalLink service where the combination of
semantics, content type and content qualifier is not sufficient to identify
them. It contains a service specific vocabulary. It aids clients in presenting to
the user the same sort of link as they go from one dataset to another within
a service. For instance, suppose a service serves both continuum and line
cubes. Using local semantics, users can configure their clients such that,
as they change to a new data set, they always see the line cube even when
the semantics, content qualifier and content type columns agree for both
types of data. The vocabulary can be a simple list of terms defined for the
service (eg : local semantics="line-cube") or can be described in an ad hoc
external resource accessible via an URI (eg : local semantics="http://our-
service-adhoc-vocab /terms#continuum-cube").

3.2.11 link auth

The link auth column tells the client whether or not authentication is re-
quired to use the link. Valid values are:
false : the link allows anonymous access only
optional : the link supports both anonymous and authenticated access
true : authentication is required
This field may be null (blank) if the value is unknown.

3.2.12 link _authorized

The link authorized column tells the client whether the currently authenti-
cated identity is authorized to use the link. For VOTable, the FIELD must
be datatype="boolean". This is generally a prediction to save clients from
trying to use a link and getting a permission denied response. Valid values
are:

false : current user not authorized

true : current user is authorized

If the value is false and the caller tries to use the link anyway, it
may be challenged for credentials (e.g. HTTP 401 response with WWW-
Authenticate headers) or denied (e.g. HT'TP 403 “permission denied”).

If the value is true, the caller should proceed with the same authentica-
tion and should expect to succeed.

This field may be null (blank) if the value is unknown.

16

3.3 Successful Requests

Successfully executed requests should result in a response with HTTP status
code 200 (OK) and a response in the format requested by the client or in
the default format for the service. The content of the response (for tabular
formats) is described above, with some additional details below.

Unless the incoming request included a RESPONSEFORMAT parameter
requesting a different format, the content-type header of the response must
be one of the values allowed by the VOTable specification, which at the time
of this writing includes “application/x-votable+xml” and “text/xml”. The
former value is preferred and SHOULD be augmented with the “content”
parameter set to “datalink”, with the canonical form given in 3.1 strongly
recommended. Contrary to all other uses of the string given in 3.1, clients
wishing to evaluate the content type of the response must, however, perform
a full parse of header value. This specification cannot and does not outlaw
content types with additional parameters (e.g. “application/x-votable+xml,
content—datalink;charset—=iso-8859-1") or with extra spaces or quotes (as
allowed for MIME types, Freed and Borenstein (1996)).

If the incoming request includes a DALI RESPONSEFORMAT parame-
ter, content-type follows the DALI rules.

3.3.1 VOTable output

The table of links must be returned in a RESOURCE with type="results".
The table must be in TABLEDATA serialization unless another serialization
is specifically requested (see 2.1.2) and supported by the implementation.
The name and UCD attributes for FIELD elements in the VOTable (and
the units in one case) are specified above (see 3.2).

The DALI specification states that VOTable output main "results" RE-
SOURCE should include an INFO element with name="standardID" and
the standardID string as a value.

<RESOURCE type="results">
<INFO name="standardID" value="ivo://ivoa.net/std/DatalLink#links-1.1"/>
<TABLE>
</TABLE>

</l;{}'3éUURCE>

From version 1.1 of this standard, the {links} response main "results" RE-
SOURCE must include this INFO element so that a table of links is easily
identified by users and applications when initially received from the service
and if saved for later use.

17

3.3.2 Other Output Formats

This specification does not describe any other output formats, but allows
(via the RESPONSEFORMAT in section 2.1.2) implementations to provide
output in other formats.

3.4 Errors

The error handling specified for DALI-sync resources applies to service failure
(where no links can be generated). Services should return the document
format requested by the client (see 2.1.2). For the standard output format
(VOTable) the error document must also be VOTable.

For errors that occur while generating individual links, each identifier
may result in a link with only an error message as described above. In
either case (error document or per-link error message), the error message
must start with one of the strings in Table 2, in order of specificity.

Error Meaning

NotFoundFault | Unknown ID value

UsageFault Invalid input (e.g. invalid ID value)
TransientFault | Service is not currently able to function
FatalFault Service cannot perform requested action
DefaultFault Default failure (not covered above)

Table 2: Error Messages

In all cases, the service may append additional useful information to the
error strings above. If there is additional text, it must be separated from the
error string with a colon (:) character, for example:

NotFoundFault: ivo://example.com/data?foo cannot be found

UsageFault: foo:bar is invalid, expected an ivo URI

4 Service Descriptors

The DataLink service interface is designed to add functionality to data dis-
covery services by providing the connection between the discovered datasets
and the download of data files and access to services that act on the data.
When the {links} capability returns links to services, the response document
also needs to describe the services so that clients can figure out how to in-
voke them. This is done by including an additional metadata resource in the
response document to describe each type of service that can be used.

18

Here we describe how to construct a resource that describes a service and
add it to a VOTable document. This “service descriptor” mechanism can be
used in any VOTable document, such as a data discovery response from a
TAP query or one of the simple DAL query protocols or the {links} endpoint
described above. The linked services can be any HTTP service, including
but not limited to the {links} endpoint described above, other IVOA services
(e.g. SODA), custom services, or other kinds of internet resources like web
pages (e.g. interactive applications, DOI landing pages, or documentation).

4.1 Service Resources

In a data discovery response, one RESOURCE element (usually the first) will
have an attribute type="results" and tabular data; this resource contains
the query result. To describe an associated service, the VOTable document
would also contain one or more resources with attribute type="meta" and
utype="adhoc:service" (or utype="adhoc:this" in case of a self-describing
service — see 77). A resource of this type has no tabular data, but may
include a rich set of metadata. The utype attribute makes it easy for clients
to find the RESOURCE elements that describe services.

A short name attribute, and a more verbose DESCRIPTION subelement,
MAY be added to the service descriptor RESOURCE to provide the user
with information about the service’s purpose or semantics. This SHOULD
be done if the semantics are not obvious, and especially in the case of multiple
sibling service descriptors, or non-standard services.

In cases where a response document contains several “service descriptor”
RESOURCES and several “results” RESOURCES, these RESOURCEs MAY
be nested in order to better display correct association.

4.2 Descriptive PARAMs

A service resource contains PARAM elements to describe the service. The
standard PARAM elements for a service resource are described in Table 3.

name value required
accessURL URL to invoke the capability yes
standardID URI for the capability no
resourceldentifier | IVOA registry identifier no
contentType Media type of the service response | no
exampleURL example invocation of the service | no

Table 3: Parameters Describing the Service

19

For services that implement an IVOA standard, the standardID is spec-
ified as the value attribute of the PARAM with name="standardID". For
free or custom services, this PARAM is not included.

For registered services, the resourceldentifier PARAM allows the client
to query an IVOA registry for complete resource metadata. This could be
used to find documentation, contact info, etc. Although they need not be,
free or custom services could be registered in an IVOA registry and thus
have a resourceldentifier to enable lookup of the record.

For standard services, the value of the accessURL PARAM must be the
accessURL for the capability specified by the standardID. The accessURL
is not generally usable as-is; the client must include extra parameters as de-
scribed below. If a standardID indicates a capability that supports multiple
HTTP verbs (GET, POST, etc.), the client may use any supported verbs.
Otherwise, there is no way in this version to specify that POST (for example)
is supported so clients should assume that only HT'TP GET may be used.
Since the accessURL may contain parameters, clients must parse the URL
to decide how to append additional parameters when invoking the service.

In case the contentType is “text/html”, the client SHOULD send the
result of the service query to a web browser. This is appropriate for both
HTML documents and web interactive interfaces.

A service descriptor may contain multiple exampleURL PARAMs. In
exampleURL PARAMSs, operators can give valid service calls as GET-able
URLs in the PARAMS’ value attribute. They are intended as an aid for
debugging, in particular to aid users and developers in making sure a service
is still operating as expected. The PARAM’s description should give an
indication of what the call will result in. End-user clients might indicate
exampleURLSs to the user after unexpected service failures.

4.3 Input PARAMSs

A service descriptor must contain a GROUP element with name="inputParams"
to describe user-specified input parameters of the service. There are three
types of input params: params with a fixed value, params where the val-
ues come from the ‘“results”’, and params where the value is variable and
chosen /specified by the user.

For params with a fixed value (e.g. fly="true"), the client must treat it
as a required parameter and include it in the service invocation; this allows
a service implementor to include constant params explicitly (and describe
them via a DESCRIPTION element) rather than just include them in the
“accessURL” without the possibility to explain them.

For services where the parameter value(s) come from the “results” re-
source, the value attribute is empty (value="") and the PARAM includes a
ref attribute to indicate the FIELD (column) that contains the values. For

20

example, a TAP query result may contain identifiers that can be used to
invoke the links service; the FIELD with the identifiers must have an XML
ID attribute (e.g. ID="abc") and the input PARAM would include the at-
tribute ref="abc"). When this mechanism is used, the client must treat it
as a required parameter and the parameter and value must be included in
the service invocation.

For user-specified input PARAMs the value attribute is empty (value=
"") and the user supplies the value(s). The PARAM specifies the type of
value required via the datatype, arraysize, and xtype attributes; this may
be augmented further by the ucd, units and utypes' attributes and a child
DESCRIPTION element. To allow for expressive, usable user interfaces, op-
erators SHOULD indicate useful ranges of parameters in MIN and MAX chil-
dren or, for enumerated parameters, indicate the valid values in OPTIONS
in case these values cannot be inferred from relevant metadata retrieved
before the service descriptor discovery. In general, services may have param-
eters of this type that are optional or required and this distinction is not
currently described; services should use a child DESCRIPTION element to
document any requirements. Clients should assume that these user-specified
parameters are optional, but that specifying some of them may be neces-
sary to have the service do something useful. Services should respond with
an informative error message if the input is not adequate to perform the
operations(s).

4.4 Service self-description

A service may include a service descriptor that describes itself with its nor-
mal output. In that case the utype “adhoc:this” indicates the self-describing
nature of the service descriptor. This convention makes finding the self-
description unambiguous in cases where the output also contains other ser-
vice descriptors. This usage is comparable to prototype work on S3 (see
Rodrigo and Cervino et al. (2008)) and when combined with calling a ser-
vice with no input parameters (e.g., as allowed in 2.1.1), and/or with the
DALI MAXREC=0 convention, will make it easy for clients to obtain a descrip-
tion of both standard and custom features.

For backward compatibility with Datalink 1.0 and STA 2.0, client soft-
ware conforming to the present recommendation should also treat elements of
the form <RESOURCE type="meta" utype="adhoc:service" name="this"/>
as self-descriptions, equivalent to <RESOURCE type="meta" utype="adhoc:this" name=""/>.
A conforming client should treat the provision of more than one self-
description <RESOURCE> element as an error, except that if a service provides
exactly one of each of the present (Datalink 1.1 and beyond) and DataLink

! An example of utype usage for service parameters is described in section 3.4 of the
SODA specification

21

1.0 styles, the client may silently ignore the Dataliink 1.0 style instance.
The output of a {links} endpoint with no input ID would include the
self-describing service descriptor and an empty results table.

4.5 Example: Service Descriptor for the {links} Capability

The {links} capability can be used with a result table when one of the
columns contains identifier values that can be used with the ID parame-
ter (see 2.1.1). In order for the service resource to refer to this FIELD, the
FIELD element describing this column of the table must include an XML
ID attribute that uniquely identifies the FIELD (column). For example, a
response following the ObsCore-1.1 data model would use the following:

<FIELD name="obs_publisher_did" ID="primaryID"
utype="obscore:Curation.PublisherDID"
ucd="meta.ref.ivoid"
datatype="char" arraysize="256%" />

where the ID value primarylD is arbitrary. This FIELD would typically
be found within the RESOURCE of type="results". The same VOTable
document would have a second RESOURCE with type="meta" to describe
the associated DataLink {links} capability.

The {links} capability described in section 2 is described by the following
resource:

<RESOURCE type="meta" utype="adhoc:service" name="RawAndCatalogDatalLinks">

<DESCRIPTION>
This datalink service gives access to the raw data for the

discovered datasets as well as to catalogues of extracted sources

</DESCRIPTION>

<PARAM name="standardID" datatype="char" arraysize="x"
value="ivo://ivoa.net/std/DataLink#links-1.1" />

<PARAM name="accessURL" datatype="char" arraysize="x*"
value="http://example.com/mylinks" />

<PARAM name="contentType" datatype="char" arraysize="x"
value="application/x-votable+xml;content=datalink" />

<PARAM name="exampleURL" datatype="char" arraysize="x"
value="http://example.com/mylinks?ID=NGC’206946" />

<GROUP name="inputParams">

<PARAM name="ID" datatype="char" arraysize="x"
value="" ref="primaryID"/>
</GROUP>
</RESOURCE>

Clients that want to find services to operate on the results would look for
resources with type="meta" and utype="adhoc:service". They would find a
DataLink service specifically via the PARAM with name="standardID". To
call the service, the GROUP contains a PARAM with the service parameter

22

name and a ref attribute whose value is the XML ID attribute on a FIELD.
In the example above, the ref="primaryID" refers to the FIELD with ID=
"primaryID" in the same document (usually the result table). The URL to
call the service would be:

http://example.com/datalink/mylinks?ID=<obs_publisher_did value>

The exampleURL value in the example above provides an example of a
URL that use of this service descriptor could produce; it should resolve to
produce an actual result.

Although this version of Datalink only has one parameter (ID), using a
GROUP and providing the service parameter name allows this recipe to be
used with any service and (with the GROUP) with multi-parameter services.

In the above example, the {links} capability is not registered in an IVOA
registry so there is no resourceldentifier PARAM included in the descriptor.

4.6 Example: Service Descriptor for an SIA-1.0 Service

Suppose you have an STA-1.0 service and you want users to be able to call it
to get SIA-1.0 specific metadata. This VOTable RESOURCE describes the
basic query interface of STA-1.0:

<RESOURCE type="meta" utype="adhoc:service"
name="RadioCubeDiscoveryService">
<DESCRIPTION>

This parameter based HTTP service allows discovery of Radio Cubes

obtained by LOFAR observations processing
</DESCRIPTION>
<PARAM name="resourceldentifier" datatype="char" arraysize="*"
value="ivo://example.com/mySIA" />
<PARAM name="standardID" datatype="char" arraysize="x"
value="ivo://ivoa.net/std/SIA#1.0" />
<PARAM name="accessURL" datatype="char" arraysize="x*"
value="http://example.com/sia/query" />
<PARAM name="contentType" datatype="char" arraysize="x"
value="application/x-votable+xml" />
<GROUP name="inputParams">
<PARAM name="P0S" datatype="char" arraysize="x"
value=""/>
<PARAM name="SIZE" datatype='"char" arraysize="x"
value="0.5"/>
<PARAM name="VERB" datatype="int" value="0"/>
<PARAM name="FORMAT" datatype="char" arraysize="x"
value="ALL">
<VALUES>
<OPTION value="ALL" />
<OPTION value="image/fits" />
<OPTION value="METADATA" />

23

</VALUES>
</PARAM>
</GROUP>
</RESOURCE>

If this SIA service supported querying specific data collections via a cus-
tom parameter named COLLECTION, the following PARAM would describe
the custom parameter, including the possible values:

<PARAM name="COLLECTION" datatype="char" arraysize="x*"
value="ALL">
<VALUES>
<OPTION value="ALL" />
<OPTION value="F0OO" />
<OPTION value="BAR" />
</VALUES>
</PARAM>

This PARAM would be added to the GROUP name="inputParams" of the

service description.

4.7 Example: Service Descriptor for VOSpace-2.0

VOSpace-2.0 is a RESTful web service with several capabilities. Each of
these capabilities can be described with a service descriptor; this would save
the client having to perform a registry lookup to find and use the service.
The descriptors cannot describe the path usage and XML document based
input to the service, but they can describe the optional parameters:

<RESOURCE type="meta" utype="adhoc:service" ID="vnodes" name="CADC-Store">
<DESCRIPTION>
Datasets discovered here are automatically available in
CADC’s VOSpace under the URI produced here
</DESCRIPTION>
<PARAM name="resourceldentifier" datatype='"char" arraysize="x"
value="ivo://example.com/vospace" />
<PARAM name="standardID" datatype="char" arraysize="x"
value="ivo://ivoa.net/std/V0Space/v2.0#nodes" />
<PARAM name="accessURL" datatype="char" arraysize="x*"
value="http://example.com/vospace/nodes" />
<GROUP name="inputParams">
<PARAM name="detail" datatype="char" arraysize="*"
value="min"/>
<PARAM name="limit" datatype="int"
value="1000"/>
<PARAM name="uri" datatype="char" arraysize="x"
value=""/>
</GROUP>
</RESOURCE>

24

<RESOURCE type="meta" utype="adhoc:service" ID="vtrans">
<PARAM name="resourceldentifier" datatype="char" arraysize="x"
value="ivo://example.com/vospace" />
<PARAM name="standardID" datatype="char" arraysize="x"
value="ivo://ivoa.net/std/V0Space/v2.0#transfers" />
<PARAM name="accessURL" datatype="char" arraysize="x*"
value="http://example.com/vospace/transfers" />
</RESOURCE>

Since the capability being described is RESTful, the caller must recognise
the standardID values and use a VOSpace-aware client to call the service.

4.8 Example: SODA Spectral Cutout with Custom Parameters

The following service descriptor conforms to the requirements of SODA
(Bonnarel and Dowler et al., 2017) and offers a cutout service for a spec-
trum. It also offers further, non-standard parameters for format conversion
and basic re-calibration. It gives enough metadata to enable informative
user interfaces.

<RESOURCE ID="procsvc" name="proc_svc" type="meta"
utype="adhoc:service">
<GROUP name="inputParams">
<PARAM arraysize="*" datatype="char" name="ID"
ucd="meta.id;meta.main"
value="ivo://org.gavo.dc/~?feros/data/f08751.fits">
<DESCRIPTION>The publisher DID of the dataset of
interest</DESCRIPTION>
</PARAM>
<PARAM arraysize="*" datatype="char" name="FLUXCALIB"
ucd="phot.calib" utype="ssa:Char.FluxAxis.Calibration"
value="">
<DESCRIPTION>Recalibrate the spectrum. Right now,
the only recalibration supported is max(flux)=1
(’RELATIVE’) .</DESCRIPTION>
<VALUES>
<OPTION name="RELATIVE" value="RELATIVE"/>
<OPTION name="UNCALIBRATED" value="UNCALIBRATED"/>
</VALUES>
</PARAM>
<PARAM arraysize="2" datatype="double" name="BAND"
ucd="em.wl" unit="m" value=""
xtype="interval">
<DESCRIPTION>Spectral cutout interval</DESCRIPTION>
<VALUES>
<MIN value="3.52631986e-07"/>
<MAX value="9.21500998e-07"/>
</VALUES>
</PARAM>

25

<PARAM arraysize="x" datatype="char" name="FORMAT"
ucd="meta.code.mime" utype="ssa:Access.Format" value="">
<DESCRIPTION>MIME type of the output format</DESCRIPTION>
<VALUES>
<OPTION name="V0OTable, binary encoding"
value="application/x-votable+xml"/>
<0PTION name="V0Table, tabledata encoding"
value="application/x-votable+xml;serialization=tabledata"/>
<OPTION name="Tab separated values" value="text/plain"/>
<OPTION name="Comma separated values" value="text/csv"/>
<OPTION name="FITS binary table" value="application/fits"/>
</VALUES>
</PARAM>
</GROUP>
<PARAM arraysize="*" datatype="char" name="accessURL"
ucd="meta.ref.url"
value="http://dc.zah.uni-heidelberg.de/feros/q/sdl/dlget"/>
<PARAM arraysize="x*" datatype="char" name="standardID"
value="ivo://ivoa.net/std/S0DA#sync-1.0"/>
</RESQURCE>

The PARAM describing the ID parameter has a non-empty value at-
tribute, meaning that a client will always call the service with the dataset
ID of a specific dataset. This is typical for service descriptors in datalink
documents.

The FLUXCALIB parameter allows the client to specify one of two val-
ues: UNCALIBRATED or RELATIVE (listed as OPTIONS along with a
description of the meaning). The UCD (Derriere and Preite Martinez et al.,
2005) value of phot.calib conveys the basic meaning of this parameter (it is
related to photometric or flux calibration).

The BAND parameter allows the user to specify a spectral interval to
extract from the spectrum and follows SODA’s regulations. Its VALUES
child declares the range of wavelengths in the dataset; services should always
try to give information on the sensible ranges of input parameters, and clients
should strive to make them easily accessible to users, if possible in the users’
preferred units. Given that at this point users do not have access to the full
dataset, it is otherwise hard for them to guess what could be entered.

Finally, note the standardID PARAM outside of the GROUP of input
parameters. It is a promise that the service conforms to SODA’s guarantees
(e.g., that BAND actually works as specified there). Clients must compare
its value case-insensitively (because it is an IVOA identifier) and should for
robustness ignore everything after the dot in the fragment identifier when
determining whether or not to treat a service as a SODA version 1 service,
as the minor version is guaranteed to be operationally insignificant.

26

4.9 Example: Self-Describing Service

The following service descriptor self-describes an ad hoc (non standard) ser-
vice to apply a power law model on XMM-Newton spectra. It gives enough
metadata to enable informative user interfaces to this service appropriate for
the specific spectrum identified by the specified oid.

<RESOURCE type="meta" utype="adhoc:this" ID="PwL"
name="Power Law fitting">
<DESCRIPTION>
Apply a power law model on a XMM-Newton EPIC spectrum
</DESCRIPTION>
<PARAM name="accessURL" datatype="char" arraysize="x*"
value="http://obs-he-1m:8888/3XMM/fitmodelonspectrum& ;model=powlaw"/>
<GROUP name="inputParams">
<PARAM name="o0id" datatype="char" arraysize="x"
value="1160803203386703876">
<DESCRIPTION>Spectrum internal ID in the database </DESCRIPTION>
</PARAM>
<PARAM name="binSize" ucd="spect.binSize" datatype="int" value="10" >
<DESCRIPTION>Number of counts per bin</DESCRIPTION>
<VALUES>
<OPTION value="1" />
<OPTION value="5" />
<OPTION value="10" />
<0PTION value="20" />
<OPTION value="50" />
</VALUES>
</PARAM>
<PARAM name="nh" ucd="phys.abund.X" datatype="float"
unit="1e22cm**-2" value="0.01" >
<DESCRIPTION>Galactical NH</DESCRIPTION>
<VALUES>
<MIN value="0" />
<MAX value="1" />
</VALUES>
</PARAM>
<PARAM name="alpha" ucd="meta.code;spect.index" datatype="float"
value="1.7" >
<DESCRIPTION>Photon index of power law</DESCRIPTION>
<VALUES>
<MIN value="1" />
<MAX value="9" />
</VALUES>
</PARAM>
</GROUP>
</RESQURCE>

In the above example we give the self-describing service descriptor a
name attribute with the value “adhoc:this” to indicate the self-describing

27

nature. This convention would make finding the self-description unambigu-
ous in cases where (i) the output also contained other service descriptors
and (ii) the caller could not infer which descriptor was the self-describing
one from the standardID (because it is optional and not present for custom
services and because they might just have a URL). Even trying to match
the URL that was used with the accessURL in the descriptors is likely to
be unreliable (e.g. if providers use HTTP redirects to make old URLs work
when service deployment changes).

5 Changes

5.1 DatalLink-1.1

e allow optional columns to contain values when the row (link) has an
error _message (see Section 3.2.4)

e added optional local semantics to identify corresponding rows for dif-
ferent IDs in the same service (see Section 3.2.10)

e relax content-type usage to allow any valid VOTable MIME type (see
Section 3.3)

e INFO element with standardID mandatory in {links} response (see
Section 3.3.1)

e added optional content qualifier to describe link target content with
terms from the product-type vocabulary (see Section 3.2.9)

e added optional link auth and link authorized to signal whether au-
thentication is necessary to use the link (see Sections 3.2.11 and 3.2.12)

e clarified use of multiple ID values and possible OVERFLOW (see Sec-
tion 2.1.1)

e clarified use of utype for self-describing service descriptors(see Section
77)

e clarified use of semantics (see Section 3.2.6)

e generalize by adding use cases for links to content other than data files
(see Sections 1.2.8 and 1.2.9)

e added using LINK to convey when datalink request URL is in a table
column (see Section 3.1.1)

e service descriptors can include a contentType param to describe service
output and should include a name and description (see Sections 4.1 and
4.2)

28

e service descriptors can include exampleURL param(s) with working
example and description (see Section 4.2)

e VOSI-availability and VOSI-capabilities endpoints are now optional
(see Section 2.3)

e Capability standardID updated to ivo://ivoa.net/std/Datalink#links-1.1
(see Section 2.2)

5.2 DatalLink-1.0

Detailed evolution up to version 1.0 described below.

5.3 PR-Datalink-1.0-20150413

e Restricted the {links} resource path so that it must be a sibling of the
VOSI resources in order to allow discovery of VOSI resources from a

{links} URL.

e Changed ID parameter to allow caller to invoke service with no ID val-
ues and get an empty result table; this is actually easier to implement
than a special error case. Added reference to previous work on S3 and
an example section where an empty links response has a self-describing
service descriptor and an empty result.

e [ixed URL to DALI document in the references section.
e Fixed namespace prefix in example capabilities document to use rec-
ommended value.
5.4 PR-DatalLink-1.0-20140930

e Re-organised introduction to introduce the links capability and distin-
guish it from the service descriptor more clearly. Explicitly noted that
service descriptors do not describe the output of a service.

e Fixed various small typos mentioned on the RFC page.

e Clarified the use of the DataLink vocabulary in the semantics column
of the links table.

e Changed the links table output constraints to allow only one of: ac-
cess_url, service def, or error _message. This removes the possible in-
consistency of access url in the table being different from accessURL
in a service descriptor referenced by use of service def and reduces
service use by clients to a single supported approach.

29

5.5

5.6

Added specific datatype="long" to the content length field in the links
table.

Moved VOSpace-2.0 service descriptor to be a separate example and
made it explicit that all the necessary details to invoke such a RESTful
service is not supported in this version of the specification; clients must
recognise the standardID to use RESTful web services.

PR-DatalLink-20140530

Changed document status to proposed recommendation.
Removed REQUEST parameter

Added custom service example.

Removed standard authentication and authorization error messages
since these are difficult to implement consistently in different web ser-
vice platforms. Changed the error message strings to use the word
Fault (following GWS-WG usage, e.g. VOSpace-2.0) since Error has
specific meaning in some platforms.

WD-DataLink-20140505

Changed the standardID for the {links} resource to include version as
will be described in the StandardsRegExt record.

Changed service descriptor resource to use type="meta" utype=
"adhoc:service" so VOTable documents pass schema validation and
this resource type can still be easily found.

Improved the VOSI-capabilities example so it describes all parameters
of the example DataLink service.

Removed unnecessary HTTP header advice and clarified the strict
DataLink mimetype usage.

Removed mention of DALI-examples since it is an optional feature for
all services.

Changed name of the input parameters group element in a service
descriptor to inputParams.

Fixed reference to DALI document.
Added STA-1.0 resource desciptor example.

Tried to clarify the relationship of the two aspects of DatalLink in the
introduction.

30

e Specifically allow access url in the list of links to be different from
accessURL in the service descriptor, with VOSpace example.

5.7 WD-DataLink-20140212

e Clarified that one can implement a standalone DatalLink service or
include {links} resources in other services.

e Re-ordered sections 2-5 so all the sections describing the {links} capa-
bility are together.

e Changed from GROUP with PARAM and FIELDref siblings to
PARAM with ref attribute when defining a parameter-column-with-
values in section 4.1.

e Clarified the introduction so it is clear we intend to support linking of
any services via RESOURCE(s) in any responses.

e Changed the output of {links} resource to clearly differentiate between
links with usable accessURL and links where the accessURL is a service
that requires more parameters. Changed the naming style for fields in
the list of links to use lower case with underscore separator so that
direct potential implementations don’t run into case issues.

References

Berners-Lee, T., Fielding, R. and Masinter, L. (2005), ‘Uniform Resource
Identifier (URI): Generic syntax’, RFC 3986.
http://www.ietf.org/rfc/rfc3986.txt

Bonnarel, F., Dowler, P., Demleitner, M., Tody, D. and Dempsey, J. (2017),
‘IVOA Server-side Operations for Data Access Version 1.0°, IVOA Recom-
mendation 17 May 2017, arXiv:1710.08791.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517B

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Gray, N. and Taylor, M. (2021), ‘Vocabularies in the VO
Version 2.0, IVOA Recommendation 25 May 2021.
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.0525D

Derriere, S., Preite Martinez, A., Williams, R., Gray, N., Mann, R., McDow-
ell, J., Mc Glynn, T., Ochsenbein, F., Osuna, P. and Rixon, G. (2005),
‘An IVOA Standard for Unified Content Descriptors Version 1.10°, IVOA

31

http://www.ietf.org/rfc/rfc3986.txt
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517B
http://www.ietf.org/rfc/rfc2119.txt
https://ui.adsabs.harvard.edu/abs/2021ivoa.spec.0525D

Recommendation 19 August 2005, arXiv:1110.0525.
http://doi.org/10.5479/ADS/bib/2005ivoa. spec.0819D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2017), ‘Data Access
Layer Interface Version 1.1’, IVOA Recommendation 17 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D

Dowler, P., Rixon, G. and Tody, D. (2010), ‘Table Access Protocol Version
1.0’, IVOA Recommendation 27 March 2010, arXiv:1110.0497.
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D

Freed, N. and Borenstein, N. (1996), ‘MIME part one: Format of internet
message bodies’, RFC 2045.
http://www.ietf.org/rfc/rfc2045.txt

Graham, M., Rixon, G., Dowler, P., Major, B., Grid and Web Services Work-
ing Group (2017), ‘IVOA Support Interfaces Version 1.1’, IVOA Recom-
mendation 24 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524G

Louys, M., Tody, D., Dowler, P., Durand, D., Michel, L., Bonnarel, F.,
Micol, A. and IVOA DataModel Working Group (2017), ‘Observation Data
Model Core Components, its Implementation in the Table Access Protocol
Version 1.17, IVOA Recommendation 09 May 2017.
http://doi.org/10.5479/ADS/bib/2017ivoa. spec.0509L

Ochsenbein, F., Taylor, M., Donaldson, T., Williams, R., Davenhall, C.,
Demleitner, M., Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McG-
lynn, T., Szalay, A. and Wicenec, A. (2019), ‘VOTable Format Definition
Version 1.4’, IVOA Recommendation 21 October 2019.
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.10210

Plante, R., Demleitner, M., Benson, K., Graham, M., Greene, G., Harrison,
P., Lemson, G., Linde, T. and Rixon, G. (2018), ‘VOResource: an XML
Encoding Schema for Resource Metadata Version 1.1°, IVOA Recommen-
dation 25 June 2018.
http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0625P

Plante, R., Williams, R., Hanisch, R. and Szalay, A. (2008), ‘Simple
Cone Search Version 1.03’, IVOA Recommendation 22 February 2008,
arXiv:1110.0498.
http://doi.org/10.5479/ADS/bib/2008ivoa. specQ0222P

Rodrigo, C., Cervino, M., Solano, E. and Manzato, P. (2008), ‘S3: Proposal
for a simple protocol to handle theoretical data (microsimulations)’, IVOA
Note.
http://www.ivoa.net/documents/latest/S3TheoreticalData.html

32

http://doi.org/10.5479/ADS/bib/2005ivoa.spec.0819D
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0517D
http://doi.org/10.5479/ADS/bib/2010ivoa.spec.0327D
http://www.ietf.org/rfc/rfc2045.txt
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0524G
http://doi.org/10.5479/ADS/bib/2017ivoa.spec.0509L
https://ui.adsabs.harvard.edu/abs/2019ivoa.spec.1021O
http://doi.org/10.5479/ADS/bib/2018ivoa.spec.0625P
http://doi.org/10.5479/ADS/bib/2008ivoa.specQ0222P
http://www.ivoa.net/documents/latest/S3TheoreticalData.html

Servillat, M., Riebe, K., Boisson, C., Bonnarel, F., Galkin, A., Louys, M.,
Nullmeier, M., Sanguillon, M. and Streicher, O. (2019), ‘Ivoa provenance
data model’, IVOA Proposed Recommendation.
http://www.ivoa.net/documents/ProvenanceDM/index.html

33

http://www.ivoa.net/documents/ProvenanceDM/index.html

	Introduction
	The Role in the IVOA Architecture
	Motivating Use Cases
	Multiple Files per Dataset
	Progenitor Dataset
	Alternate Representations
	Standard Services
	Free or Custom Services
	Access Data Services
	Recursive DataLink
	Datasets linked to an astronomical source
	Metadata and data related to provenance entities

	The {links} endpoint
	Parameters on {links} endpoints
	ID
	RESPONSEFORMAT

	Registering {links} endpoints
	VOSI

	{links} Response
	DataLink MIME Type
	DataLink recognition outside the context of ObsCore responses

	List of Links
	ID
	access_url
	service_def
	error_message
	description
	semantics
	content_type
	content_length
	content_qualifier
	local_semantics
	link_auth
	link_authorized

	Successful Requests
	VOTable output
	Other Output Formats

	Errors

	Service Descriptors
	Service Resources
	Descriptive PARAMs
	Input PARAMs
	Service self-description
	Example: Service Descriptor for the {links} Capability
	Example: Service Descriptor for an SIA-1.0 Service
	Example: Service Descriptor for VOSpace-2.0
	Example: SODA Spectral Cutout with Custom Parameters
	Example: Self-Describing Service

	Changes
	DataLink-1.1
	DataLink-1.0
	PR-DataLink-1.0-20150413
	PR-DataLink-1.0-20140930
	PR-DataLink-20140530
	WD-DataLink-20140505
	WD-DataLink-20140212

	References

