
International
Virtual
Observatory

Alliance

Table Access Protocol

Version 1.1

IVOA Proposed Recommendation 2017-11-24

Working group
Data Access Layer Working Group

This version
http://www.ivoa.net/documents/TAP/20171124

Latest version
http://www.ivoa.net/documents/TAP

Previous versions
PR-TAP-1.1-20170830
WD-TAP-1.1-20170707
WD-TAP-1.1-20160428
TAP-1.0

Author(s)
Patrick Dowler, Guy Rixon, Doug Tody, Markus Demleitner

Editor(s)
Patrick Dowler

Version Control
Revision 4798, 2018-03-07 10:04:39 +0100 (Wed, 07 Mar 2018)
https://volute.g-vo.org/svn/trunk/projects/dal/TAP/TAP.tex

http://www.ivoa.net/documents/TAP/20171124
http://www.ivoa.net/documents/TAP
http://www.ivoa.net/Documents/TAP/20170707/
http://www.ivoa.net/Documents/TAP/20170707/
http://www.ivoa.net/Documents/TAP/20160428/
http://www.ivoa.net/Documents/TAP/1.0
https://volute.g-vo.org/svn/trunk/projects/dal/TAP/TAP.tex

Abstract
The table access protocol (TAP) defines a service protocol for access-

ing general table data, including astronomical catalogs as well as general
database tables. Access is provided for both database and table metadata as
well as for actual table data. This version of the protocol includes support
for multiple query languages, including queries specified using the Astro-
nomical Data Query Language ADQL within an integrated interface. It also
includes support for both synchronous and asynchronous queries. Special
support is provided for spatially indexed queries using the spatial exten-
sions in ADQL. A multi-position query capability permits queries against
an arbitrarily large list of astronomical targets, providing a simple spatial
cross-matching capability. More sophisticated distributed cross-matching ca-
pabilities are possible by orchestrating a distributed query across multiple
TAP services.

Status of this document
This is an IVOA Proposed Recommendation made available for public

review. It is appropriate to reference this document only as a recommended
standard that is under review and which may be changed before it is accepted
as a full Recommendation.

A list of current IVOA Recommendations and other technical documents
can be found at http://www.ivoa.net/documents/.

Contents

1 Introduction 4
1.1 Role within the VO Architecture 5
1.2 Motivating Use Cases . 7

1.2.1 Discover Metadata . 7
1.2.2 Query Custom Tables 7
1.2.3 Query Standard Tables 8
1.2.4 Query Standard Data Models 8
1.2.5 ADQL Queries . 8
1.2.6 Other Query Languages 8
1.2.7 Asynchronous Queries 9
1.2.8 Synchronous Queries 9

2

http://www.ivoa.net/documents/

2 Resources 9
2.1 {sync} . 10
2.2 {async} . 11
2.3 availability . 12
2.4 /capabilities . 12
2.5 /tables . 15
2.6 /examples . 15
2.7 Parameters . 16

2.7.1 LANG . 16
2.7.2 QUERY . 17
2.7.3 FORMAT and RESPONSEFORMAT 18
2.7.4 MAXREC . 18
2.7.5 RUNID . 19
2.7.6 UPLOAD . 19

3 Use of VOTable 20
3.1 INFO elements . 20
3.2 Successful Queries . 21
3.3 Errors . 21
3.4 Overflows . 22
3.5 Mapping Table Datatypes . 22

4 Metadata: TAP_SCHEMA 23
4.1 Schemas . 24
4.2 Tables . 24
4.3 Columns . 25
4.4 Foreign Keys . 27

5 Examples 28
5.1 Example: Asynchronous Query 28

5.1.1 Creating and Executing a Simple Query 28
5.1.2 Modify a Query Job Before Execution 29
5.1.3 Running a Query . 31

5.2 Example: Synchronous Query 33
5.3 Example: DALI-examples Document 33

3

A Changes from Previous Versions 35
A.1 PR-TAP-1.1-20171124 . 35
A.2 PR-TAP-1.1-20170830 . 35
A.3 WD-TAP-1.1-20170707 . 36
A.4 WD-TAP-1.1-20161011 . 36
A.5 WD-TAP-1.1-20160428 . 37
A.6 WD-TAP-1.1-20150930 . 37
A.7 Changes from TAP-1.0 . 37

Acknowledgments

The authors would like to acknowledge all contributors to this and previous
versions of this standard, especially: K. Andrews, J. Good, R. Hanisch, G.
Lemson, T. McGlynn, K. Noddle, F. Ochsenbein, I. Ortiz, P. Osuna, R.
Plante, J. Salgado, A. Stebe, and A. Szalay.

Conformance-related definitions

The words “MUST”, “SHALL”, “SHOULD”, “MAY”, “RECOMMENDED”,
and “OPTIONAL” (in upper or lower case) used in this document are to be
interpreted as described in IETF standard, Bradner (1997).

The Virtual Observatory (VO) is general term for a collection of feder-
ated resources that can be used to conduct astronomical research, education,
and outreach. The International Virtual Observatory Alliance (IVOA) is a
global collaboration of separately funded projects to develop standards and
infrastructure that enable VO applications.

1 Introduction

The Table Access Protocol (TAP) is a web-service protocol that gives ac-
cess to collections of tabular data referred to collectively as a tableset. TAP
services accept queries posed against the tableset available via the service
and return the query response as another table, in accord with the rela-
tional model. Queries may be submitted using various query languages and
may execute synchronously or asynchronously. Support for the Astronomical
Data Query Language ADQL (Ortiz and Lusted et al., 2008) is mandatory;
support for other query languages is supported but optional.

4

http://www.ivoa.net

Figure 1: Architecture diagram for this document

The result of a TAP query is another table, normally returned as a
VOTable. Support for VOTable output is mandatory; all other formats
are optional.

The table collections made accessible via TAP are typically stored in
relational database management systems (RDBMS). A TAP service exposes
the database schema to client applications so that queries can be posed
directly against arbitrary data tables available via the service.

Multi-table operations such as joins or cross matches are possible pro-
vided the tables are all managed by the local TAP service, and provided
the service supports these capabilities. Larger scale operations such as a
distributed cross match are also possible, but require combining the results
of multiple TAP services.

1.1 Role within the VO Architecture

NOTE: not in TAP-1.0
Fig. section 1 shows the role this document plays within the IVOA ar-

chitecture (Arviset and Gaudet et al., 2010).

5

TAP depends on the following other IVOA standards:

UWS (Harrison and Rixon, 2016a) TAP services can be queried asynchro-
nously; the Universal Worker Service UWS defines the corresponding
communication pattern. Note that while TAP 1.1 does not require the
use of any particular minor version of the UWS standard, UWS 1.1
can significantly streamline the communication, and implementors of
TAP 1.1 are encouraged to support UWS 1.1 or later.

ADQL (Osuna and Ortiz et al., 2008) A standards-compliant TAP services
must support queries written in the Astronomical Data Query Lan-
guage.

VOSI (Grid and Web Services Working Group, 2017) The VO Support In-
terfaces standard defines endpoints for metadata discovery; for TAP,
this is the tables, capabilities, and availability endpoints. Note that
while TAP 1.1 does not require the use of any particular minor version
of the VOSI standard, the VOSI-tables resource in VOSI 1.1 provides
important usability features, and implementors of TAP 1.1 are encour-
aged to support VOSI 1.1 or later.

VOTable (Ochsenbein and Taylor et al., 2013) All TAP services must be
able to serve query results in the VOTable format. Note that while
TAP 1.1 does not require the use of any particular minor version of
the VOtable standard, older versions are missing features that are re-
quired and may be ususable in practice. For example, the overflow
reporting and xtype attribute were introduced in VOTable 1.2 so that
is the minimum viable version that must be used.

TAP is related in other ways to the following IVOA standards:

DALI (Dowler and Demleitner et al., 2017) The Data Access Layer Inter-
face standard gives general rules for the construction of DAL standards.
TAP has been written against version 1.1 of DALI. In particular, TAP
directly references DALI 1.1’s serialisation rules for geometries and
timestamps and recommends implementing the examples endpoint de-
fined by DALI.

Obscore (Tody and Micol et al., 2011) The Obscore data model facilitates
the publication of metadata of observational data products. TAP is
used to access compliant metadata collections.

6

RegTAP (Demleitner and Harrison et al., 2014) The relational model for
the VO Registry provides a data model for publishing service meta-
data. TAP is used to access compliant metadata collections.

TAPRegExt (Demleitner and Dowler et al., 2012) While there is no formal
requirement to that effect, the response on a TAP service’s capabilities
endpoint should contain instances tr:TableAccess-typed capabilities
in order to allow clients to discover several important aspects of a TAP
service’s capabilities (e.g., resource limits, output formats, user defined
functions).

UWSRegExt (prototype) While there is no formal requirement to that effect,
the response on a TAP service’s capabilities endpoint should contain
instances uws:Async-typed and uws:Sync-typed interfaces in order to
allow clients to discover interfaces that support different authentication
mechanisms via alternate resources within the service.

1.2 Motivating Use Cases

Below are some of the more common use cases that have motivated the
development of the TAP specification. While this is not complete, it helps
to understand the problem area covered by this specification.

1.2.1 Discover Metadata

Since content in relational databases is often custom and project-specific,
users of a TAP service must be able to discover the names of tables and
columns, datatypes, units, and other information necessary to construct
meaningful correct queries.

1.2.2 Query Custom Tables

A large amount of astronomical data and metadata is stored in tables in
relational databases. Historically, users could query these tables through
custom user interfaces (usually web page forms), but such approaches could
not provide support for truly ad-hoc querying. A TAP service should enable
users to discover and query custom tables with a flexible and expressive input
that supports ad-hoc querying: selecting output, filtering the result, joining
multiple tables, computing aggregate quantities, etc.

7

1.2.3 Query Standard Tables

A TAP service should enable users to query externally defined standard
tables in a uniform way such that the same web service request can be
sent to multiple services. Services must be able to declare their support for
standard tables in the service metadata.

1.2.4 Query Standard Data Models

A TAP service should enable users to query (parts of) externally defined
data models that are (partially or fully) implemented by the service. Services
must be able to declare their support for data models as well as the way that
model elements are mapped to tables and columns.

1.2.5 ADQL Queries

The Astronomical Data Query Language ADQL (Ortiz and Lusted et al.,
2008) is the standard query language for the IVOA. Support for ADQL
queries is mandatory. ADQL can be used to specify queries that access one
or more tables provided by the TAP service, including the standard metadata
tables. In general, the client must access table metadata in order to discover
the names of tables and columns and then formulate queries. ADQL queries
provide a direct (low-level) access to the tables; a query will be written for
a specific TAP service and will not be usable with other services unless the
query refers only to common tables and columns. It is also possible that
the service registration (in an IVOA Registry) may include sufficient table
metadata to enable queries to be written directly.

1.2.6 Other Query Languages

A TAP service implementor must be able to include support for other query
languages, such pass-through of native SQL directly to an underlying DBMS
or simple key-vale (parameter-based) constraints, without making their ser-
vice non-compliant with the specification. The service interface must allow
for this and the service capabilities must be able to describe it. This mech-
anism also allows future developments within and outside the IVOA to be
used without revising the TAP specification.

8

1.2.7 Asynchronous Queries

Asynchronous queries allow for long running queries to complete without
the client maintaining a connection to the service. Results are stored by
the service for later retrieval by the client. Asynchronous query execution
is generally more robust and not susceptible to time-outs or other transient
failures. They are especially suited to queries that run for a long time before
producing output (e.g. queries that compute or aggregate values).

1.2.8 Synchronous Queries

Synchronous queries execute immediately and the client must wait for the
query to finish. Synchronous query execution is generally simpler and pro-
vides a faster (low latency) response and should be adequate when the query
will execute and start returning results quickly. Even with large query re-
sults, synchronous queries are a good approach as long as the service can
stream the output and consume modest internal resources.

2 Resources

An implementation of a TAP service provides the following RESTful re-
sources under the base URL.

resource type resource name required

sync /sync must
async /async must
sync service specific may (alternate authentication method)
async service specific may (alternate authentication method)
VOSI-availability service specific must (should be anonymous)
VOSI-availability service specific may (alternate authentication method)
VOSI-capabilities /capabilities must (should be anonymous)
VOSI-capabilities service specific may (alternate authentication method)
VOSI-tables /tables should
VOSI-tables service specific may (alternate authentication method)
DALI-examples /examples should
DALI-examples service specific may (alternate authentication method)

At least one set of sync and async resources must be named /sync and
/async respectively for backwards compatibility with TAP-1.0 (which re-

9

quired these names). Other sync and async resources may have service spe-
cific names. As required by DALI (Dowler and Demleitner et al., 2017),
all resources except the VOSI-availability must be siblings of the VOSI-
capabilities resource.

The fixed name resources above (async, sync, tables) should be used for
the primary access mode of the service; this is typically anonymous access
and other resource names may be used for authenticated access. However, if a
service only supports authenticated access to these resources, the fixed names
may be used for authenticated access. The VOSI resources should allow
anonymous access as they can be used by clients to determine if the service is
available and which resources to use with available security (authentication)
methods.

The web resource at the root of the tree must represent the service as
a whole. This specification defines no standard representation for this root
resource. Implementations may provide a representation, or may return a
’404 not found’ response to requests for the root web-resource. One possible
representation is an HTML page describing the scientific usage and content
of the service. TAP clients must not depend on a specific representation of
the root web-resource.

2.1 {sync}

A TAP service must provide one or more web resources that represents the
results of synchronous query execution. The sync resources must conform to
the general rules for DALI-sync resources. The exact form of the query, and
hence the representation of the resource, is defined by the query parameters
as listed in section 2.7. Representations of results of queries is defined in
section 2.7.3 and section 3.

For query languages that produce a single result (e.g. ADQL) executed
using the /sync endpoint, the result of a successful query is returned in the
response or the response includes an HTTP redirect (303: See Other) to a
resource from which the result may be retrieved.

An HTTP-GET request to the /sync web resource may return a cached
copy of the representation. This cached copy might come from an HTTP
cache between the client and the service, and the service may also maintain
its own cache. Clients which require an up-to-date representation of volatile
data or metadata must use HTTP POST.

10

2.2 {async}

A TAP service must provide one or more web resource representing controls
for asynchronous queries. Specifically, the web resource must conform to
the general rules for DALI-async resources and thus represent a job-list as
specified in UWS (Harrison and Rixon, 2010).

The child web resources of the /async resource are as specified by UWS.
These are descendants of the /async web-resource, and they include a web
resource that represents the eventual result of an asynchronous query, e.g.:

http://example.com/tap/async/42/results/result

where the base URL for the TAP service is:

http://example.com/tap

the UWS job list is:

http://example.com/tap/async

and the job resource is

http://example.com/tap/async/42

where 42 is an example job identifier. A client making an asynchronous
request must use the UWS facilities to monitor or control the job. In addition
to the job list and job resource above, UWS specifies the name and semantics
of a small set of child resources used to view and control the job, e.g.:

http://example.com/tap/async/42/phase
http://example.com/tap/async/42/quote
http://example.com/tap/async/42/executionduration
http://example.com/tap/async/42/destruction
http://example.com/tap/async/42/error
http://example.com/tap/async/42/parameters
http://example.com/tap/async/42/results
http://example.com/tap/async/42/owner

Successful TAP queries produce results which must be accessible as resources
under the UWS result list, e.g.:

http://example.com/tap/async/42/results/

Failed TAP queries produce an error document (see section 3.3) which must
be accessible as the error resource, e.g.:

http://example.com/tap/async/42/error

11

For query languages that produce a single result executed using the /async
endpoint, the result of a successful query can be found within the result list
specified by UWS; the result must be named result and thus clients are able
to access it directly, e.g.:

http://example.com/tap/async/42/results/result

Access of this resource must deliver the result, either directly or as an HTTP
redirect (303: See Other) to a resource from which the result may be re-
trieved.

For query languages that may produce multiple result resources, the
names of the results are not specified (they may be specified in the specifica-
tion for the language). The client can always access the result list resource
as specified by UWS.

If the query returned no rows, the result resource must exist and contain
no data rows. Details on interacting with these resources are specified in the
UWS standard; for examples specific to TAP see section 5 below.

2.3 availability

The use of the VOSI-availability resource is described in DALI.

2.4 /capabilities

The TAP-1.0 standard is identified using

ivo://ivoa.net/std/TAP

For TAP-1.1 we use the same standardID but the version attribute of the
capability should use the minor version (e.g. version=“1.1”).

In TAP, the base URL is described with a single standard identifier and
the mandatory chilsd resources have specific names (section 2). One or
more DALI-async and DALI-sync interfaces to the query capability may
be described using the prototype UWS registry extension (UWSRegExt).
This allows service providers to describe multiple resources (interfaces) that
deliver the query features (e.g. with different protocols or authentication
methods) in the VOSI-capabilities resource.

The use of the VOSI-capabilities resource is described in DALI.
For example, the returned capabilities document for a service supporting

TAP might look as follows:

12

<vosi:capabilities
xmlns:vosi="http://www.ivoa.net/xml/VOSICapabilities/v1.0"
xmlns:vs="http://www.ivoa.net/xml/VODataService/v1.1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.ivoa.net/xml/VOSICapabilities/v1.0
http://www.ivoa.net/xml/VOSICapabilities/v1.0
http://www.ivoa.net/xml/VODataService/v1.1
http://www.ivoa.net/xml/VODataService/v1.1">

<capability standardID="ivo://ivoa.net/std/TAP">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.1">
<accessURL use="base"> http://example.net/myTAP </accessURL>

</interface>

<interface xsi:type="uws:Async"
xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base"> http://example.net/myTAP/async </accessURL>
</interface>
<interface xsi:type="uws:Async"

xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base">https://example.net/myTAP/auth−async</accessURL>
<securityMethod standardID="ivo://ivoa.net/sso#BasicAA"/>

</interface>
<interface xsi:type="uws:Async"

xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base">https://example.net/myTAP/cert−async</accessURL>
<securityMethod
standardID="ivo://ivoa.net/sso#tls-with-certificate"/>

</interface>

<interface xsi:type="uws:Sync"
xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base"> http://example.net/myTAP/sync </accessURL>
</interface>
<interface xsi:type="uws:Sync"

xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base">https://example.net/myTAP/auth−sync</accessURL>
<securityMethod standardID="ivo://ivoa.net/sso#BasicAA"/>

</interface>
<interface xsi:type="uws:Sync"

xmlns:uws="http://www.ivoa.net/xml/UWSRegExt/v0.1"
role="std" version="1.1">

<accessURL use="base">https://example.net/myTAP/cert−sync</accessURL>

13

<securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate"/>
</interface>

</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#capabilities">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
<accessURL use="full"> http://example.net/myTAP/capabilities </accessURL>

</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#availability">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.0">
<accessURL use="full"> http://example.net/myTAP/availability </accessURL>

</interface>
</capability>

<capability standardID="ivo://ivoa.net/std/VOSI#tables-1.1">
<interface xsi:type="vs:ParamHTTP" role="std" version="1.1">
<accessURL use="base"> http://example.net/myTAP/tables </accessURL>

</interface>
<interface xsi:type="vs:ParamHTTP" role="std" version="1.1">
<accessURL use="base"> https://example.net/myTAP/cert−tables </accessURL>
<securityMethod standardID="ivo://ivoa.net/sso#tls-with-certificate"/>

</interface>
<interface xsi:type="vs:ParamHTTP" role="std" version="1.1">
<accessURL use="base"> https://example.net/myTAP/auth−tables </accessURL>
<securityMethod standardID="ivo://ivoa.net/sso#BasicAA"/>

</interface>
</capability>

</vosi:capabilities>

The first interface with type vs:ParamHTTP gives the base URL; this is
expected to be included in registry records and support finding TAP services
in a simple and backwards compatible manner. The subsequent interface
elements describe combinations of access URL and security method(s) that
can be used by clients to make authenticated calls. They also use the type
of the interface to specify that the particular access URL uses an async or
sync invocation pattern. Note that in this example the anonymous async
and sync endpoints are described explicitly but could also be inferred from
the base service URL using the standard names. Service implementors must
include the base interface for backwards compatibility in registry queries and
should include all relevant UWS-typed interfaces for direct client use.

The service capabilities must be accessible from a web resource with
relative URL /capabilities that is a direct child of the root web resource.

14

The /capabilities resource must be accessible via the http GET method.
The content is described by VOSI (Grid and Web Services Working Group,
2017).

2.5 /tables

The table metadata should be accessible from a web resource with relative
URL /tables that is a direct child of the root web resource. The /tables re-
source implements the VOSI-tables capability and output described in VOSI.
The content is equivalent to the metadata from the TAP_SCHEMA described
in section 4. The use of VOTableType (rather than TAPType) in the VOSI-
tables output is recommended because the values map directly; TAPType
may be used when VOTableType does not provide a suitable alternative.

Services which do not implement the /tables resource must respond with
an HTTP response code of 404 when this resource is accessed.

2.6 /examples

A successful GET from this endpoint MUST yield a document with a MIME
type of either application/xhtml+xml or text/html. A service that does
not provide examples MUST return a 404 HTTP status on accessing this
resource.

If present, the endpoint must be represented in a capability in the TAP
service’s registry record. The capability’s standardID is defined by DALI.
A capability element could hence look like this:
<capability standardID="ivo://ivoa.net/std/DALI#examples">

<interface xsi:type="vr:WebBrowser">
<accessURL use="full"
>http://myarchive.net/myTAP/examples</accessURL>

</interface>
</capability>

TAP defines two additional properties for the examples vocabulary:

• query – each example MUST have a unique child element with simple
text content having a property attribute valued query. It contains
the query itself, preferably with extra whitespace for easy human con-
sumption and editing. This will usually be a HTML pre element.

• table – examples MAY also have descendants with property attributes
having the value table. These must have pure text content and contain
fully qualified table names to which the query is somehow “pertaining”.

15

Although it might be tempting, examples authors should not put table
names into HTML a elements (e.g., to link to the table descriptions). As
discussed in DALI 1.1, sect. 2.3, this would result in invalid RDF statements.

An example of a response from a TAP service’s examples endpoint is
given in section 5.3.

2.7 Parameters

The {async} and {sync} web-resources must accept the parameters listed in
the following sub-sections. In a synchronous request, the parameters select
the representation returned in the response message. In an asynchronous
request, the parameters select the representation of the eventual query result
rather than the response to the initial request.

Requirements on the presence and values of parameters described below
are enforced only when the TAP request is executed (not when individual
HTTP requests are handled). Thus, for asynchronous TAP queries, the
parameter requirements must be satisfied (and errors returned if not) only
when the query is run in (in the sense of UWS job execution). Specifically,
asynchronous queries may be created with with no parameters and multiple,
subsequent HTTP POST actions may specify the parameters in any order.

Not all combinations of the parameters are meaningful. If a service re-
ceives a spurious parameter in an otherwise correct request, then the service
must ignore the spurious parameter, must respond to the request normally
and must not report errors concerning the spurious parameter.

2.7.1 LANG

The LANG parameter specifies the query language. The service must
support the LANG parameter and the client must provide a value. The
only standard value for the LANG parameter is ADQL. Support for other
languages and the LANG value to use with them can be described in
TAPRegExt service capabilities (Demleitner and Dowler et al., 2012).

For example, an ADQL query would be performed with

LANG=ADQL
QUERY=<ADQL query string>

A query with a custom query language would be performed with

LANG=MySecretLang
<MySecretLang-specific parameters>

16

The value of LANG is a string specifying the language and optionally the
language version used for the query parameter(s), as defined by the service
capabilities. The client may specify the version of the query language, e.g.
LANG=ADQL-2.0 (the syntax should be as shown) or it may omit the ver-
sion, e.g. LANG=ADQL. The service should return an “unknown query
language” error as described in section 3.3 if an unsupported language or an
incompatible language version is specified.

2.7.2 QUERY

The QUERY parameter is used to specify queries that are serialised as a
single character string, such as an ADQL query (with LANG=ADQL or
some version thereof). The interpretation of the value depends on the value
of the LANG parameter. This parameter should also be used to specify the
query for other values of LANG (e.g. LANG=<some RDBMS-specific SQL
variant>) when appropriate.

A service must support the QUERY parameter because ADQL is a re-
quired language.

If timestamp comparisons are supported within ADQL queries, they must
use the syntax defined in DALI. Timestamp values are usable if there are
columns with timestamp values, including in uploaded tables if table upload
is supported.

If the service supports the use of spatial coordinates in ADQL queries, the
output of geometry values should use the syntax defined in DALI. Services
may output geometry values using the STC-S convention described in the
previous version of this standard, but we strongly recommend switching to
the DALI syntax.

If table upload is supported, values using the DALI syntax must be sup-
ported and values using the previous STC-S convention may be supported
for backwards compatibility. Input and output of all values must be sup-
ported (e.g. selecting all columns from an uploaded table) for all types even
if comparisons are not supported.

Note: Although it is allowed by the ADQL syntax (version 2.0 at least),
clients should be careful when mixing constants and column references for
coordinate system and coordinate values. For example, POINT(’ICRS’, t.ra,
t.dec) does not cause t.ra and t.dec to be transformed to ICRS; it simply tells
the service to treat the values as being expressed in that coordinate system.
Clients should avoid using the coordinate system argument to geometric
functions (use null value or use an alternate function without the coordinate

17

system argument if available).

2.7.3 FORMAT and RESPONSEFORMAT

The RESPONSEFORMAT parameter is fully described in DALI. For back-
wards compatibility, TAP-1.1 must also accept the FORMAT parameter as
equivalent to RESPONSEFORMAT. Specifying both FORMAT and RE-
SPONSEFORMAT is undefined.

If both the FORMAT and RESPONSEFORMAT parameters are omit-
ted, the default format is VOTable. A TAP service must support VOTable
as an output format, should support CSV and TSV output, and may support
other formats.

2.7.4 MAXREC

The MAXREC parameter and its effect on the query result is fully described
in DALI. If the result set is truncated in this fashion, it must include an
overflow indicator as specified in section 3.4.

For the special value of MAXREC=0, the service is not required to exe-
cute the query; a successful MAXREC=0 request does not necessarily mean
that the query is valid and the overflow indicator does not necessarily mean
that there is at least one row satisfying the query. The service may perform
validation and may try to execute the query, in which case a MAXREC=0
request can fail. A query with MAXREC=0 can be used with a simple query
(e.g. SELECT * FROM some_table) to extract and examine the VOTable
metadata (assuming FORMAT=votable). Note: in this version of TAP,
this is the only mechanism to learn some of the detailed metadata, such as
coordinate systems used.

The output truncation caused by the MAXREC parameter occurs after
any limitations imposed by the query and the overflow indicator is only added
if the query result is actually truncated. For example:

MAXREC=A
QUERY=select TOP B * from foo

for integer values A and B. Assuming the table contains many rows, if A
> B then the result table will contain B rows and no overflow indicator. If
A < B then the result table will contain A rows and an overflow indicator.
If the table contains A or fewer rows then the result will not contain an
overflow indicator.

18

2.7.5 RUNID

The RUNID parameter is fully described in DALI.

2.7.6 UPLOAD

The UPLOAD parameter is described in DALI. Services should support the
upload of temporary tables in VOTable (Ochsenbein and Williams et al.,
2013) format via the standard UPLOAD parameter. The table-name(s) must
be legal ADQL table names as defined in Ortiz and Lusted et al. (2008) but
restricted as described in section 4. URIs may be simple URLs (e.g. with
a URI scheme of http or https) or URIs that must be resolved (e.g. with a
URI scheme of vos or param) to give the location of the table content.

If table upload is supported, the service must accept tables in VOTable
format. The client specifies the name of the uploaded table; this name must
be a legal ADQL table name with no catalog or schema (i.e., a string fol-
lowing the regular identifier production of ADQL). Uploaded tables must be
referred to in queries as TAP_UPLOAD.<tablename>, where <tablename>
is the name specified by the user. Tables in the TAP_UPLOAD schema are
transient and persist only for the lifetime of the query (although caching
might be used behind the scenes) and are never visible in the TAP_SCHEMA
metadata.

For uploaded tables, the name attribute of the FIELD element is used as
the column name. Services must support delimited identifiers so that FIELD
names that are not valid ADQL column names work correctly.

The DALI UPLOAD parameter supports both external resources and in-
line content. For external resources, one provides a URI (usually an HTTP
URL) the TAP service can use to obtain the table content. For example,

HTTP POST http://example.com/tap/async/42
UPLOAD=mytable,http://otherplace.com/path/votable.xml

The service would retrieve the table from the provided URL and make it
visible to the query as TAP_UPLOAD.mytable.

If the TAP service supports VOSpace URIs, one may specify an upload
table using a URI to a table stored in a VOSpace, for example:

HTTP POST http://example.com/tap/async/42
UPLOAD=mytable,vos://space/path/votable.xml

The service would resolve the URI, contact the VOSpace, retrieve the table,
and make it visible to the query as TAP_UPLOAD.mytable.

19

UPLOADs are accumulating, i.e., each UPLOAD parameter given will
create one or more tables in TAP_UPLOAD. When the table names from
two or more upload items agree after case folding, the service behaviour
is unspecified. Clients thus cannot reliably overwrite uploaded tables; to
correct errors, they have to tear down the existing job and create a new
one. In principle, any number of tables can be uploaded using the UPLOAD
parameter and any combination of URI schemes supported by the service as
long as they are assigned unique table names within the query. Services may
limit the size and number of uploaded tables; if the service refuses to accept
the entire table it must respond with an error as described in section 3.3.

Table upload must support all valid VOTable content even if they do not
support all features and uses of extended data types; clients must be able
to upload and then query a valid table and round-trip all values. Services
should store extended types (e.g. timestamp) in an appropriate database
column type in order to facilitate predictable use in queries.

3 Use of VOTable

VOTable (Ochsenbein and Williams et al., 2013) is the standard format for
output (query results) and input (table upload) in a TAP service so most of
this section deals with how VOTable is used. However, rules about serialising
column values also apply to other formats (e.g. CSV and TSV).

The use of VOTable in TAP services is described in DALI, with additional
clarifications or advice below.

3.1 INFO elements

The RESOURCE element must contain INFO element(s) as described in
DALI.

Additional INFO elements may be provided, e.g., to echo the input pa-
rameters back to the client in the query response (a useful feature for debug-
ging or to self-document the query response), but clients should not depend
on these.

<RESOURCE type=”results”>
...
<INFO name="QUERY">

select * from stuff.items
</INFO>
...

20

</RESOURCE>

3.2 Successful Queries

The result of a query depends on the query language used and may be one
or more tables in one or more resources. Unsupportable combinations of
query result and FORMAT (e.g. queries that produce multiple tables and
an inherently single-table format like CSV) will cause the request to fail.
Currently, an ADQL query result must be a single table (in a single file).

The output table must include the same number and order of columns
as specified in the SELECT clause of the query. For VOTable output, the
name attribute of FIELD elements must be the same as the column names
(or aliases if specified) in the query and the datatype, arraysize, and xtype
attributes of FIELD elements must be set using the values from the TAP-
SCHEMA. In cases where items in the select list do not have names (e.g.
expression or function invocation without an alias) the service must generate
a name; generated names must be unique (within the output table) and
should be valid ADQL identifiers.

CSV formatted data should represent the output table with one row of
text per table row, with the table column values rendered as text. If a column
value contains a comma, the entire column value should be enclosed in double
quotes. Text lines may be arbitrarily long. The first data row should give
the column name(s) as the data value. CSV data must be returned with a
MIME type of text/csv; if the optional header line (with column names) is
included, the MIME type must be text/csv;header=present. Full details of
CSV format are defined in Shafranovich (2005).

TSV formatted data should represent the output table with one row
of text per table row, with the table column values rendered as text and
separated by the TAB character. TSV data must be returned with a MIME
type of text/tab-separated-values as described in University of Minnesota
Gopher Team (1993). Column values may not contain the TAB character.

3.3 Errors

If the service detects an exceptional condition, it must return an error doc-
ument with an appropriate HTTP-status code. TAP distinguishes three
classes of exceptions.

Errors in the use of the HTTP protocol.
Errors in the use of the TAP protocol, including both invalid requests

and failure of the service to complete valid requests.

21

Error documents for HTTP-level errors are not specified in the TAP pro-
tocol. Responses to these errors are typically generated by service containers
and cannot be controlled by TAP implementations. There are several cases
where a TAP service could return an HTTP error. First, the /async end-
point could return a 404 (not found) error if the client accesses a job within
the UWS job list that does not exist. Second, access to a resource could
result in an HTTP 401 (not authorized) error if authentication is required
or an HTTP 403 (forbidden) error if the client is not allowed to access the
resource.

Error documents should be in a format that matches the requested for-
mat where possible; see DALI for details. If the error document is being
retrieved from the /async/<jobid>/error resource (specified by UWS) af-
ter an asynchronous query, the HTTP status code should be 200. If the
error document is being returned directly after a synchronous query, the ser-
vice may use an appropriate HTTP status code, including 200 (successfully
returning a response to the request) and various 4xx and 5xx values.

3.4 Overflows

If a query is executed by a TAP service, the number of rows in the table of
results may exceed a limit requested by the user (using the MAXREC param-
eter) or a limit set by the service implementation (the default or maximum
value of MAXREC). In these cases, the query is said to have ’overflowed’.
Typically, a TAP service will not detect an overflow until some part of the
table of results has been sent to the client.

If an overflow occurs, the TAP service must produce a table of results that
is valid, in the required output format, and which contains all the results up
to the point of overflow. Since an output overflow is not an error condition,
the MIME type of the output must be the same as for any successful query
and the HTTP status-code must be as for a successful, complete query.

Reporting of overflow depends on the output format and is described in
DALI.

3.5 Mapping Table Datatypes

This section describes the bi-directional mapping between VOTable and
RDBMS + geometric datatypes and extends the basic rules for serialising
such values in VOTable described in DALI. These rules apply to input tables
supplied via an UPLOAD parameter (see section 2.7.6) and to result tables
after successful query execution.

22

The mapping to and from VOTable makes use of the datatype, arraysize,
and xtype attributes. Mapping for primitive types (numbers and strings) is
straightforward; services should insure that input values behave as expected
in query processing and output values should have correct and complete
metadata. Mapping for specially structured values use xtype(s) specified in
DALI. The behaviour of such structured values in queries depends on the
query language (section 2.7.1) being used.

4 Metadata: TAP_SCHEMA

There are several approaches to getting metadata for a given TAP service.
All TAP services must support a set of tables in a schema named TAP-
SCHEMA that describe the tables and columns included in the service. In
addition to the TAP_SCHEMA, there are two other ways to get metadata
from a TAP service. First, the VOSI tables resource provides metadata
on all tables and columns; this resource is described in (section 2.5). The
VOSI tables resource provides the same metadata as the TAP_SCHEMA but
in a rigorously controlled format; the information in the TAP_SCHEMA is
equivalent to that defined by the VODataService (Plante and Stébé et al.,
2010). Second, the client may specify a query of one or more tables set-
ting the MAXREC parameter to 0 so that only the metadata regarding the
requested fields is returned. Use of MAXREC is described in section 2.7.4.

The TAP_SCHEMA provides access to table, column, and join key meta-
data through the TAP query mechanisms themselves. Users can discover
tables or columns that meet their specific criteria by querying the tables de-
scribed below. The service may enhance the TAP_SCHEMA with additional
metadata where that seems appropriate; since it is self-describing, the TAP-
SCHEMA may be queried to determine if any extended schema metadata is
defined by the service. Services must provide these tables and make them
accessible by all supported query mechanisms.

Column datatypes in the TAP_SCHEMA are specified using the same
concepts used in VOTable: datatype, arraysize, and xtype. For backwards
compatibility, implementors must also include the "size" column and pop-
ulate it where possible. Implementors should use arraysize values that best
describe their implementation of the TAP_SCHEMA tables (e.g. arraysize
64* to describe a column with database type varchar(64)). Implementors
may also use alternate character or numeric types (e.g. short or long instead
of int or unicodeChar instead of char) as long as query execution is consistent
with the recommended types.

23

Implementors are permitted to include additional tables in the TAP-
SCHEMA to describe additional aspects of their service not covered by this
specification. Implementors may also include additional columns in the stan-
dard tables described below. For example, one could include a column with
a timestamp saying when metadata values were was last modified.

4.1 Schemas

The table TAP_SCHEMA.schemas must contain the following columns:

column name type not-null

schema_name string true
utype string false
description string false
schema_index integer false

The schema_name values must be unique and may be qualified by the
catalog name or not depending on the implementation requirements. The
fully qualified schema name is defined by the ADQL language and follows the
pattern [catalog.]schema. The schema metadata are included for reference
and are not used directly to construct queries.

4.2 Tables

The table TAP_SCHEMA.tables must contain the following columns:

column name type not-null

schema_name string true
table_name string true
table_type string true
utype string false
description string false
table_index integer false

The table_name values must be unique. The value of the table_name
should be the string that is recommended for use in querying the table; it
may or may not be qualified by schema and catalog name(s) depending on
the implementation requirements. The fully qualified table name is defined
by the ADQL language and follows the pattern [[catalog.]schema.]table. If

24

the table name is such that the name must be quoted (delimited identifier
in ADQL) then the value must include the quotes.

The table_type value must be either table or view.
The table_index is used to recommend table ordering for clients. Clients

may order by table_index (ascending) so lower index tables would appear
earlier in a listing.

4.3 Columns

The table TAP_SCHEMA.columns must contain the following columns:

column name type not-null

table_name string true
column_name string true
datatype string true
arraysize string false
xtype string false
“size” integer false
description string false
utype string false
unit string false
ucd string false
indexed integer true
principal integer true
std integer true
column_index integer false

The table_name,column_name (pair) values must be unique. If the
column name is such that the name must be quoted (quoted identifier in
ADQL) then the value must include the quotes.

The type of a database column is described in the TAP_SCHEMA.columns
table using three (3) columns with an additional (deprecated) column from
TAP-1.0 for backwards compatibility. The allowed values for datatype and
the syntax for arraysize are specified in VOTable (Ochsenbein and Williams
et al., 2013). Values for xtype are not restricted per se but implementors
should use standard values such as those defined in DALI before inventing
new xtype(s).

The arraysize column gives the length of fixed and variable length
datatypes using the VOTable array shape syntax. For example, a database

25

column of type varchar(256) would be described with datatype “char” and ar-
raysize “256*”. Arrays, including multi-dimensional arrays, are permitted for
all VOTable primitive types. The "size" column is retained for backwards
compatibility to TAP-1.0 and must contain the integer value equivalent to
arraysize when possible and must be null if arraysize is null or represents a
multi-dimensional array. Both arraysize and "size" must be null for scalar
numeric columns.

To use the "size" column in a query, the column name must be put in
double quotes since it collides with an ADQL reserved word. Since delimited
identifiers are case-sensitive, for the "size" column both clients and servers
MUST always (in particular, in the creation of the TAP_SCHEMA) use lower
case exclusively. In the next major version of TAP, the "size" column will
be removed.

For columns with a database type equivalent to BLOB or CLOB, most
database systems support reference to these columns in the select clause but
not in every other part of the query where character columns may be used. In
addition, services may want to define generated columns where the output
is dynamically generated but the content is not stored in the databasase
in a form that supports querying. For example, if service implementors
want to make URL(s) available as column values in the results, but do not
actually store the URL(s) in the database, the column with URL(s) could
be referenced in the SELECT clause of a query, but could not sensibly be
used in the WHERE clause. In general, if a query references a column in
an inappropriate part of the query, the job should fail with a suitable error
message.

The principal, indexed, and std columns are boolean values implemented
as integers. As such, the value must be 0 or 1; no other values are allowed.

The principal flag indicates that the column is considered a core part
of the content; clients can use this hint to make the principal column(s)
visible, for example by selecting them by default in generating an ADQL
query. In cases where the service selects the columns to return (such as a
query language without an explicit output selection), the principal column
indicates those columns that are returned by default.

The indexed flag indicates that the column is indexed, potentially making
queries run much faster if this column is used in a constraint.

The std flag is included for compatibility with the registry, which uses
this value to indicate that a given column is defined by some standard, as
opposed to a custom column defined by a particular service.

The column_index is used to recommend column ordering for clients.

26

Clients may order by column_index (ascending) so lower index columns
would appear earlier in a listing. This is useful for keeping related columns
together in output or display.

4.4 Foreign Keys

The table TAP_SCHEMA.keys must contain the following columns to de-
scribe foreign key relations between tables:

column name type not-null

key_id string true
from_table string true
target_table string true
description string false
utype string false

The key_id values are unique and used only to join with the TAP-
SCHEMA.key_columns table below. There may be one or more rows with
different key_id values and a pair of tables to denote one or more ways to
join the tables.

The table TAP_SCHEMA.key_columns must contain the following columns
to describe the columns that make up a foreign key:

column name type not-null

key_id string true
from_column string true
target_column string true

There may be one or more rows with a specific key_id to denote single
or multi-column keys.

For the TAP_SCHEMA itself, services should enforce and list the following
foreign keys:

TAP_SCHEMA.tables.schema_name -> TAP_SCHEMA.schemas.schema_name
TAP_SCHEMA.columns.table_name -> TAP_SCHEMA.tables.table_name
TAP_SCHEMA.keys.from_table -> TAP_SCHEMA.tables.table_name
TAP_SCHEMA.keys.target_table -> TAP_SCHEMA.tables.table_name
TAP_SCHEMA.key_columns.from_column -> TAP_SCHEMA.columns.column_name
TAP_SCHEMA.key_columns.target_column -> TAP_SCHEMA.colums.column_name
TAP_SCHEMA.key_columns.key_id -> TAP_SCHEMA.keys.key_id

27

A TAP service must provide the tables listed above and may provide
other tables in the TAP_SCHEMA namespace.

5 Examples

The UWS pattern is specified in the UWS specification (Harrison and Rixon,
2010) and its application to TAP in section 2.2. TAP services may implement
UWS 1.0 or a later version. This section gives examples of the exchange of
messages between a TAP client and service when using UWS to run an
asynchronous query.

5.1 Example: Asynchronous Query

Consider a TAP service at http://example.com/tap. TAP mandates that the
asynchronous requests be directed to http://example.com/tap/async (e.g.
for anonymous queries). This URL points to the list of ’jobs’; i.e. the list of
queries currently or recently executed.

5.1.1 Creating and Executing a Simple Query

Asynchronous queries are created in the same way as synchronous, using one
of the async endpoints, for example:

HTTP POST http://example.com/tap/async
LANG=ADQL
QUERY=SELECT * FROM magnitudes AS m WHERE m.r>=10 AND m.r<=16

The service’s response to this request is an HTTP redirect with a URL
for the query job:

HTTP status 303 ’See other’
Location: http://example.com/tap/async/42

The query result or an error document can then be retrieved from a URL
associated with the job. This is an application of the UWS pattern. The
query is then executed with a separate request to run the job URL:

HTTP POST http://example.com/tap/async/42/phase
PHASE=RUN

28

The state of the job can be retrieved from the phase resource:

HTTP GET http://example.com/tap/async/42/phase

The client may have to check the phase multiple times until the job
finishes. If the service implements UWS 1.1 (Harrison and Rixon, 2016b) or
later, a blocking call can be used instead of polling. Once the job reaches the
COMPLETED phase, the results can be obtained from the results resource:

HTTP GET http://example.com/tap/async/42/results/result

5.1.2 Modify a Query Job Before Execution

To create a new query, the client POSTs a request to the job list:

HTTP POST http://example.com/tap/async
LANG=ADQL

The response with the job URL:

HTTP status 303 ’See other’
Location: http://example.com/tap/async/42

While the job is in the PENDING phase, the job parameters may be
modified by additional POST(s) to the parameters resource (see Dowler and
Demleitner et al. (2017)), for example:

HTTP POST http://example.com/tap/async/42/parameters
UPLOAD=mytable,http://a.b.c/mytable.xml
QUERY=select * from TAP_UPLOAD.mytable t join magnitudes
m on t.target = m.target

Here we have specified with the UPLOAD parameter that the service
create a temporary table named mytable with content from the VOTable at
the specified URL. The QUERY parameter can then reference the uploaded
table with the specified name (but in the TAP_UPLOAD schema).

Parameter-value pairs accumulate when POSTed to the parameters re-
source, so an additional POST of the UPLOAD parameter in this example
would add another parameter-value pair (essentially a multi-valued param-
eter as described in DALI). There is no mechanism to replace or remove a
parameter in a PENDING job.

29

After each such POST, the service issues an HTTP redirection to the
job’s URL, where the modified state may be accessed:

HTTP status 303 ’See other’
Location: http://example.com/tap/async/42

All TAP-specific parameters are stored using the parameter list mecha-
nism of UWS and are included in the XML representation of the job:

HTTP GET http://example.com/tap/async/42

or directly from the parameters resource:

HTTP GET http://example.com/tap/async/42/parameters

Individual parameters cannot be accessed as separate web resources.
The UWS pattern requires the following resources to describe and control

the job:

http://example.com/tap/async/42/phase
http://example.com/tap/async/42/quote
http://example.com/tap/async/42/executionduration
http://example.com/tap/async/42/destruction
http://example.com/tap/async/42/results
http://example.com/tap/async/42/error

The quote resource specifies the predicted completion time for the job
(query), assuming it is started immediately. In practice, it is very hard
to estimate the time a query will take; for TAP services it is recommended
that this is set to the current time plus the maximum amount of time the
query will be allowed to run. The executionduration resource specifies the
amount of time (in seconds) the job (query) will be allowed to run before be-
ing aborted by the service. The execution duration is set by the service and
can be read from the job or directly from the executionduration resource:

HTTP GET http://example.com/tap/async/42/executionduration

The service may allow the client to change the duration:

HTTP POST http://example.com/tap/async/42/executionduration
EXECUTIONDURATION=600

30

The destruction resource specifies when the service will destroy the job.
The service is only required to keep a job for a finite period of time, after
which it may destroy the job, including the result. After this time, the client
will receive an HTTP 404 ’not found’ status if it tries to get any information
about the job. The destruction time of the job is chosen by the service and
the client can read it from the job or directly from the destruction resource:

HTTP GET http://example.com/tap/async/42/destruction

The service may allow the client to change the destruction time:

HTTP POST http://example.com/tap/async/42/destruction
DESTRUCTION=2008-11-11T11:11:11Z

In general, clients should fully specify the query job parameters and then
check and possibly negotiate the UWS job control parameters.

5.1.3 Running a Query

The phase URL shows the progress of the job. When the job is created by
the service it will normally be set to PENDING, but might be set to ERROR
if the service has rejected the job. If the phase is ERROR, then the error
URL should lead to a an error document explaining the problem. If the
phase is PENDING, then the client needs to commit the job for execution.

The client runs the job by posting to the phase URL:

HTTP POST http://example.com/tap/async/42/phase
PHASE=RUN

The service replies with a redirection to the job URL

HTTP status 303 ’see other’
Location: http://example.com/tap/async/42

The phase will now have changed to either QUEUED or EXECUTING,
depending on the service implementation. The client tracks the execution
by polling the phase URL (UWS-1.0):

HTTP GET http://example.com/tap/async/42/phase

or by performing a blocking GET of the job url (UWS-1.1 or later):

HTTP GET http://example.com/tap/async/42?WAIT=30

31

The blocking GET will block until something changes in the job (usually
the phase change) and then return, with a maximum wait time specified by
the WAIT parameter. Since services may impose a limit on the maximum
wait time and may return before the job reaches a final phase, clients must
examine the job state (returned by the GET) and possibly perform additional
requests.

A job in the QUEUED or EXECUTING phase may be aborted by posting
to the phase URL:

HTTP POST http://example.com/tap/async/42/phase
PHASE=ABORT

When the query job is complete, the phase changes will normally be one
of COMPLETED, ABORTED, or ERROR (although there are other less
used phases defined in UWS). The client then retrieves the result from the
results list:

HTTP GET http://example.com/tap/async/42/results/result

The client knows that the table of results is at the URL /result relative to
the results list because the TAP protocol requires this naming. A generic
UWS client could find the name of the result and retrieve it by examining
either the job description:

HTTP GET http://example.com/tap/async/42

or by looking specifically at the result list:

HTTP GET http://example.com/tap/async/42/results

If the service cannot run the query, then the final phase is ERROR and there
is no table of results. In this case, the client should expect an HTTP 404
’not found’ status if it tries to retrieve the result. The client should look
instead at the error resource to find out what went wrong:

HTTP GET http://example.com/tap/async/42/error

If the job was aborted (by the client or the service), the final phase will be
ABORTED and there is no table or results. As with errors, the client should
look at the error resource to find out what went wrong.

32

5.2 Example: Synchronous Query

Synchronous queries return the table of results in the HTTP response to
the initial request. This is an example of a synchronous ADQL query on r
magnitude:

HTTP POST http://example.com/tap/sync
LANG=ADQL
QUERY=SELECT * FROM magnitudes as m where m.r>=10 and m.r<=16

In this example, the output format defaults to VOTable; the FORMAT
parameter could be added to select a different format.

Many implementations will implement synchronous query execution us-
ing the common POST-redirect-GET pattern. If this is the case, the re-
sponse from the initial POST will be a redirect (HTTP response code 303)
and another URL for the results, e.g.:

Location: http://example.com/tap/sync/53/go

As described in DALI, clients must be prepared to follow such redirects
to obtain the result.

5.3 Example: DALI-examples Document

The following is a full document a service might serve from its /examples
endpoint; note that you can add arbitrary styling or further HTML material
without impacting the document’s functionality.

The document also shows how operators can add links to table descrip-
tions without breaking RDFa semantics.
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML+RDFa 1.1//EN"
"http://www.w3.org/MarkUp/DTD/xhtml-rdfa-2.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" version="XHTML+RDFa 1.1">
<head>
<title>An Example for /examples</title>

</head>
<body vocab="http://www.ivoa.net/rdf/examples#">
<h1>An Example for /examples</h1>

<p>This document illustrates how to write a DALI−compliant examples
document using TAP’s special table and query properties. Apart from the
actual examples blocks, you can add arbitrary additional material, for
instance, a table of contents:</p>

33

<ul id="toc">

<a href="#QueryforCALIFAobjectproperties"
>Query for CALIFA object properties

<a href="#Queryagainstcoverage"
>Query against coverage

<p>Use the <a href="https://www.w3.org/2012/pyRdfa/Validator.html"
>W3C RDFa validator to see what semantics your RDFa actually
conveys.</p>

<div typeof="example"
id="QueryforCALIFAobjectproperties"
resource="#QueryforCALIFAobjectproperties">

<h2 property="name">Query for CALIFA object properties</h2>
<p>This example shows how to combine the
↗<em property="table">califadr3.objects table
of properties of CALIFA target galaxies with the
↗<em class="dachs-ex-taptable" property="table">califadr3.cubes
table of data cubes to select bright , early−type spirals :</p>
<pre class="dachs-ex-tapquery literal-block" property="query">

SELECT target_name, accref, hubtyp, magg
FROM califadr3.cubes

NATURAL JOIN califadr3.objects
WHERE hubtyp in (’S d’, ’S cd’, ’S c’)

AND magg<13
</pre>

</div>

<div typeof="example"
id="Queryagainstcoverage"
resource="#Queryagainstcoverage">

<h2 property="name">Query against coverage</h2>
<p>When querying against geometric columns, in particular coverage,
use ADQL’s contains or intersect functions, like this :</p>
<pre class="dachs-ex-tapquery literal-block" property="query">

SELECT accref, seeing
FROM cars.images

WHERE 1=INTERSECTS(coverage, circle(’ICRS’, 34, −4, 2))
ORDER BY seeing

</pre>
<p>Of course, this concerns all SIAP and SSAP tables
(↗</a

34

><em class="dachs-ex-taptable" property="table">cars.images only
standing as an example here) as well as
↗<em property="table">ivoa.obscore
</p>

</div>
</body>
</html>

A Changes from Previous Versions

A.1 PR-TAP-1.1-20171124

Removed language that somehow defined or restricted usage of ADQL con-
structs in favour of just referring to the AQDL spec. Clarified use of seriali-
sation rules for extended types defined in DALI.

Removed explicit datatype/arraysize/xtype from TAP_SCHEMA descrip-
tion in favour of string and integer. Specified which integers are actu-
ally booleans (0 or 1). Added list of foreign keys for TAP_SCHEMA rela-
tional model. Clarified use of quoted identifiers for column names in TAP-
SCHEMA. Added schema_index column. Clarified when the "size" col-
umn in TAP_SCHEMAcan contain a value. Clarified that both arraysize and
"size" must be null for scalar numeric columns.

Fixed use of double-quotes which misbehaved inside tables.
Fixed BasicAA security method in capabilities example. Included use of

prototype UWSRegExt interface tags in capabilities example and removed
use of separate standardID values for async and sync.

Fixed numerous typos and gramnmatical errors.
Removed obsolete REQUEST=doQuery from examples.
Added explicit reference to VOSI-tables. Updates capabilitioes example

to describe a tables-1.1 capability.
Clarified dependency on minor versions of related standards with some

recommendations on using newer versions.

A.2 PR-TAP-1.1-20170830

Added an example for examples.
Clarified that the QUERY param is intended for use with other values

of LANG and is not reserved for ADQL only. Removed text concerning the
case sensitivity of QUERY value.

35

Removed remaining uses of PQL; replaced one example with something
more clearly non-standard.

Removed restriction from previous WD that the “size” column must be
null for variable length arrays. In fact, “size” can be used for 1-dimension
arrays but just does not carry any info about them being variable-length
(which is only in the new arraysize column.

Changed language about mandatory ADQL geometry function support
back to optional (should in the case where the tables contain spatial coor-
dinates) so TAP now recommends a set of functions to support and notes
others are simply optional (or not supported in the case of REGION). Re-
moved the comment about use of point args to INTERECTS (belongs in
ADQL). Clarified that DALI timestamp format support is required only in
services where it can be used in queries.

Removed some VOTable content and reference DALI. Explicitly relaxed
datatype and arraysize used in TAP_SCHEMA tables. Fixed various cross-
references and typos.

Added example use of UWS-1.1 blocking requests.

A.3 WD-TAP-1.1-20170707

Changed arraysize in TAP_SCHEMA to allow the complete VOTable array-
size syntax and specified that the effective datatype in TAP is specified as in
VOTable using datatype,arraysize, and xtype. Recommend use of VOTable-
Type in VOSI-tables output.

Clarified required and optional ADQL geometric functions.
Format tables so column headers are bold.
Added paragraph specifying allowed values for TAP_SCHEMA.tables.table_type.
Changed the principal, indexed, and std columns in TAP_SCHEMA.columns

to boolean since we now use the VOTabletype system.
Fixed URL to schema in VOSI-capabilities example.

A.4 WD-TAP-1.1-20161011

Removed details of mapping database and VOTable data types and refer to
DALI instead.

Strongly recommend that VOSI resources allow anonymous access.
Relax restrictions on column names in uploaded tables; clarify that ser-

vices must support quoted identifiers. Advise that services should assign
unique column names in cases where they generate the name.

36

A.5 WD-TAP-1.1-20160428

Completed the mapping table from VOTable to RDBMS datatypes using
DALI-1.1 xtype values.

Added details and VOSI-capabilities example for providing multiple re-
sources with different authentication requirements. Clarified that VOSI-
availability is no longer restricted to a specific name or location.

A.6 WD-TAP-1.1-20150930

Clarified that MAXREC always overrides limitations in the query (e.g. TOP
in an ADQL query).

Clarified that services are not required to support queries that reference
tables in different schema. This is primarily to allow the TAP_SCHEMA to
be implemented in a different server from the content.

Completed the references section.

A.7 Changes from TAP-1.0

Added table_index and column_index to TAP_SCHEMA.
Clarified the relationship of MAXREC and TOP (in ADQL) and the

overflow indicator.
Added advice that the size column TAP_SCHEMA.columns must always

be used as a quoted identifier because it is a reserved word in many RDBMS
servers. Added arraysize column to TAP_SCHEMA.columns to replace size
and deprecated size (which will be removed in the next major version).

Removed REQUEST and VERSION parameters from interface.
Restructured the document and removed text that duplicates material

from DALI. Rewrite the overly long introduction with some basic use cases to
help define the scope and tell readers what TAP is supposed to accomplish.

Made clarifications: restricted allowed table names for UPLOAD, clar-
ified that multiple UPLOAD parameters accumulate, deprecated the size
column in TAP_SCHEMA.columns and added advice to quote it as a de-
limited identifier, made presence of a TABLE element on VOTable output
only required for successful queries, added optional DALI-examples endpoint
(text TBD).

Defined standardID values for the async and sync resource types and
explicitly allow for multiple of each resource (typically to support authen-
tication). The fixed paths /async and /sync are still required and are to

37

provide anonymous query access, which should be compatible with existing
services.

References

Arviset, C., Gaudet, S. and the IVOA Technical Coordination Group (2010),
‘IVOA architecture’, IVOA Note.
http://www.ivoa.net/documents/Notes/IVOAArchitecture

Bradner, S. (1997), ‘Key words for use in RFCs to indicate requirement
levels’, RFC 2119.
http://www.ietf.org/rfc/rfc2119.txt

Demleitner, M., Dowler, P., Plante, R., Rixon, G. and Taylor, M.
(2012), ‘TAPRegExt: a VOResource Schema Extension for Describing
TAP Services Version 1.0’, IVOA Recommendation 27 August 2012,
arXiv:1402.4742.
http://adsabs.harvard.edu/abs/2012ivoa.spec.0827D

Demleitner, M., Harrison, P., Molinaro, M., Greene, G., Dower, T. and
Perdikeas, M. (2014), ‘IVOA Registry Relational Schema Version 1.0’,
IVOA Recommendation 08 December 2014, arXiv:1510.02275.
http://adsabs.harvard.edu/abs/2014ivoa.spec.1208D

Dowler, P., Demleitner, M., Taylor, M. and Tody, D. (2017), ‘Data access
layer interface, version 1.1’, IVOA Recommendation.
http://www.ivoa.net/documents/DALI

Grid and Web Services Working Group (2017), ‘IVOA support interfaces
version 1.1’.
http://www.ivoa.net/documents/VOSI/20170524/index.html

Harrison, P. A. and Rixon, G. (2016a), ‘Universal Worker Service Pattern
Version 1.1’, IVOA Recommendation 24 October 2016.
http://adsabs.harvard.edu/abs/2016ivoa.spec.1024H

Harrison, P. and Rixon, G. (2010), ‘Universal worker service pattern, version
1.0’, IVOA Recommendation.
http://www.ivoa.net/documents/UWS/20101010/

Harrison, P. and Rixon, G. (2016b), ‘Universal worker service pattern, version
1.1’, IVOA Recommendation.
http://www.ivoa.net/documents/UWS

38

http://www.ivoa.net/documents/Notes/IVOAArchitecture
http://www.ietf.org/rfc/rfc2119.txt
http://adsabs.harvard.edu/abs/2012ivoa.spec.0827D
http://adsabs.harvard.edu/abs/2014ivoa.spec.1208D
http://www.ivoa.net/documents/DALI
http://www.ivoa.net/documents/VOSI/20170524/index.html
http://adsabs.harvard.edu/abs/2016ivoa.spec.1024H
http://www.ivoa.net/documents/UWS/20101010/
http://www.ivoa.net/documents/UWS

Ochsenbein, F., Taylor, M., Williams, R., Davenhall, C., Demleitner, M.,
Durand, D., Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Sza-
lay, A. and Wicenec, A. (2013), ‘VOTable Format Definition Version 1.3’,
IVOA Recommendation 20 September 2013.
http://adsabs.harvard.edu/abs/2013ivoa.spec.0920O

Ochsenbein, F., Williams, R., Davenhall, C., Demleitner, M., Durand, D.,
Fernique, P., Giaretta, D., Hanisch, R., McGlynn, T., Szalay, A., Tay-
lor, M. and Wicenec, A. (2013), ‘VOTable format definition, version 1.3’,
IVOA Recommendation.
http://www.ivoa.net/documents/VOTable/

Ortiz, I., Lusted, J., Dowler, P., Szalay, A., Shirasaki, Y., Nieto-Santisteban,
M. A., Ohishi, M., O’Mullane, W., Osuna, P., the VOQL-TEG and the
VOQL Working Group (2008), ‘IVOA astronomical data query language’,
IVOA Recommendation.
http://www.ivoa.net/documents/latest/ADQL.html

Osuna, P., Ortiz, I., Lusted, J., Dowler, P., Szalay, A., Shirasaki, Y.,
Nieto-Santisteban, M. A., Ohishi, M., O’Mullane, W., VOQL-TEG
Group and VOQL Working Group. (2008), ‘IVOA Astronomical Data
Query Language Version 2.00’, IVOA Recommendation 30 October 2008,
arXiv:1110.0503.
http://adsabs.harvard.edu/abs/2008ivoa.spec.1030O

Plante, R., Stébé, A., Benson, K., Dowler, P., Graham, M., Greene, G., Har-
rison, P., Lemson, G., Linde, T. and Rixon, G. (2010), ‘VODataService: a
VOResource schema extension for describing collections and services ver-
sion 1.1’, IVOA Recommendation.
http://www.ivoa.net/documents/VODataService/

Shafranovich, Y. (2005), ‘Common Format and MIME Type for Comma-
Separated Values (CSV) Files’, IETF RFC 4180.
https://tools.ietf.org/html/rfc4180

Tody, D., Micol, A., Durand, D., Louys, M., Bonnarel, F., Schade, D.,
Dowler, P., Michel, L., Salgado, J., Chilingarian, I., Rino, B., de Dios
Santander, J. and Skoda, P. (2011), ‘Observation Data Model Core Com-
ponents, its Implementation in the Table Access Protocol Version 1.0’,
IVOA Recommendation 28 October 2011, arXiv:1111.1758.
http://adsabs.harvard.edu/abs/2011ivoa.spec.1028T

39

http://adsabs.harvard.edu/abs/2013ivoa.spec.0920O
http://www.ivoa.net/documents/VOTable/
http://www.ivoa.net/documents/latest/ADQL.html
http://adsabs.harvard.edu/abs/2008ivoa.spec.1030O
http://www.ivoa.net/documents/VODataService/
https://tools.ietf.org/html/rfc4180
http://adsabs.harvard.edu/abs/2011ivoa.spec.1028T

University of Minnesota Gopher Team (1993), ‘Tab separated values’,
IANA, MIME Media Types.
https://www.iana.org/assignments/media-types/text/
tab-separated-values

40

https://www.iana.org/assignments/media-types/text/tab-separated-values
https://www.iana.org/assignments/media-types/text/tab-separated-values

	Introduction
	Role within the VO Architecture
	Motivating Use Cases
	Discover Metadata
	Query Custom Tables
	Query Standard Tables
	Query Standard Data Models
	ADQL Queries
	Other Query Languages
	Asynchronous Queries
	Synchronous Queries

	Resources
	{sync}
	{async}
	availability
	/capabilities
	/tables
	/examples
	Parameters
	LANG
	QUERY
	FORMAT and RESPONSEFORMAT
	MAXREC
	RUNID
	UPLOAD

	Use of VOTable
	INFO elements
	Successful Queries
	Errors
	Overflows
	Mapping Table Datatypes

	Metadata: TAP_SCHEMA
	Schemas
	Tables
	Columns
	Foreign Keys

	Examples
	Example: Asynchronous Query
	Creating and Executing a Simple Query
	Modify a Query Job Before Execution
	Running a Query

	Example: Synchronous Query
	Example: DALI-examples Document

	Changes from Previous Versions
	PR-TAP-1.1-20171124
	PR-TAP-1.1-20170830
	WD-TAP-1.1-20170707
	WD-TAP-1.1-20161011
	WD-TAP-1.1-20160428
	WD-TAP-1.1-20150930
	Changes from TAP-1.0

